zoukankan      html  css  js  c++  java
  • HDU 1024 Max Sum Plus Plus【DP+优化时间复杂度】

    Problem Description
    Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.

    Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).

    Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).

    But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
     
    Input
    Each test case will begin with two integers m and n, followed by n integers S1, S2, S3 ... Sn.
    Process to the end of file.
     
    Output
    Output the maximal summation described above in one line.
     
    Sample Input
    1 3 1 2 3
    2 6 -1 4 -2 3 -2 3
     
    Sample Output
    6
    8
    Hint
    Huge input, scanf and dynamic programming is recommended.
     

    思路

    思路很清晰,但是超时掉,寻找优化算法.

    题意:是找K段序列和使他的和最大。

    状态转移方程为:

    f[i][j]表示连续j个数分成i段最大

               f[i-1][j-1]+a[i]    当i==j时

    f[i][j]=

                max(f[i-1][k])   i-1=<k<=j-1

    但是这样算法的时间复杂度达到O(n^3)会超时,因此再算出来 f[i][j]时就把最大的f[i][k]算出来,时间复杂度为O(n^2)

    源码

    #include<stdio.h>
    #include<string.h>
    #include<iostream>
    #include<algorithm>
    using namespace std;
    #define INF 999999999
    int a[1000023];
    __int64 f[2][1000023];
    int main()
    {
        int i, j, n, m, k;
        while(scanf("%d%d", &m, &n)!=EOF)
        {
            //memset(a, 0, sizeof(a));
            //memset(f, 0, sizeof(f));  //这里会导致超时
            for(i=1; i<=n; i++)
            {
                scanf("%d", &a[i]);
                f[1][i]=f[0][i]=0;
            }
            int t=1;
            for(i=1; i<=m; i++)
            {
                f[t][i]=f[1-t][i-1]+a[i];
                f[1-t][i]=f[1-t][i-1]>f[1-t][i]?f[1-t][i-1]:f[1-t][i];
                for(j=i+1; j<=n; j++)
                {
                    f[t][j]=(f[t][j-1]>f[1-t][j-1]?f[t][j-1]:f[1-t][j-1])+a[j];
                    f[1-t][j]=f[1-t][j]>f[1-t][j-1]?f[1-t][j]:f[1-t][j-1];
                }
                t=1-t;
            }
            t=1-t;
            __int64 maxnum=-INF;
            for(i=m; i<=n; i++)
                maxnum=max(maxnum, f[t][i]);
            printf("%d\n", maxnum);
        }
    }
  • 相关阅读:
    SQL Server 系统视图
    T-SQL 批处理
    T-SQL游标
    SQL Server执行计划的理解
    SQL Server 非聚集索引的覆盖,连接,交叉和过滤 <第二篇>
    SQL Server 分区表
    SQL Server 文件和文件组
    SQL Server逻辑读、预读和物理读
    mysql 报错ERROR 1064 (42000),原因使用了mysql保留字 (right syntax to use near 'groups)
    docker Redis的主从配置
  • 原文地址:https://www.cnblogs.com/Hilda/p/2617261.html
Copyright © 2011-2022 走看看