zoukankan      html  css  js  c++  java
  • POJ 2481 Cows【树状数组】

    Description

    Farmer John's cows have discovered that the clover growing along the ridge of the hill (which we can think of as a one-dimensional number line) in his field is particularly good. 

    Farmer John has N cows (we number the cows from 1 to N). Each of Farmer John's N cows has a range of clover that she particularly likes (these ranges might overlap). The ranges are defined by a closed interval [S,E]. 

    But some cows are strong and some are weak. Given two cows: cowi and cowj, their favourite clover range is [Si, Ei] and [Sj, Ej]. If Si <= Sj and Ej <= Ei and Ei - Si > Ej - Sj, we say that cowi is stronger than cowj

    For each cow, how many cows are stronger than her? Farmer John needs your help!

    Input

    The input contains multiple test cases. 
    For each test case, the first line is an integer N (1 <= N <= 105), which is the number of cows. Then come N lines, the i-th of which contains two integers: S and E(0 <= S < E <= 105) specifying the start end location respectively of a range preferred by some cow. Locations are given as distance from the start of the ridge. 

    The end of the input contains a single 0.

    Output

    For each test case, output one line containing n space-separated integers, the i-th of which specifying the number of cows that are stronger than cowi

    Sample Input

    3
    1 2
    0 3
    3 4
    0
    

    Sample Output

    1 0 0

    题意给出每头牛的S[]与E[]当Si<=Sj&&Ej<=Ei说明i牛比j牛强壮,找出比i(1...n)强壮的牛的个数
    思路:还是应用树状数组,将E[]升序排列,S[]降序排列,注意点就是坐标x会有0出现,所以坐标x+1,避免死循环

    代码如下:

    #include<stdio.h>
    #include<string.h>
    #include<iostream>
    #include<algorithm>
    using namespace std; 
    #define N 100005
    int c[N], total[N], n, maxx; 
    struct coww
    {
        int s, e, num;
    }cow[N]; 
    int cmp(coww x, coww y)
    {
        if(x.e!=y.e)
            return x.e>y.e;
        return x.s<y.s;
    }    
    int Lowbit(int t)  
    {
        return t&(-t);
    }
    int Sum(int end)  
    {
        int sum=0;
        while(end>0)
        {
            sum+=c[end];
            end-=Lowbit(end);
        }
        return sum;
    }
    void add(int li) 
    {
        while(li<=maxx)
        {
               c[li]+=1;
            li+=Lowbit(li);
        }
    }           
    int main()
    {
        int i, j;
        while(scanf("%d", &n)!=EOF)
        {
            if(n==0)    break;
            memset(c, 0, sizeof(c)); 
            memset(total, 0, sizeof(total));
            maxx=0; 
            for(i=1; i<=n; i++)
            {
                scanf("%d%d", &cow[i].s, &cow[i].e);
                cow[i].s++, cow[i].e++; 
                cow[i].num=i;
                maxx=max(maxx, cow[i].s); 
            }
            sort(cow+1, cow+n+1, cmp);
            for(i=1; i<=n; i++)
            { 
                add(cow[i].s);
                if(cow[i].s==cow[i-1].s&&cow[i].e==cow[i-1].e&&i>1)
                     total[cow[i].num]=total[cow[i-1].num];
                else 
                    total[cow[i].num]=Sum(cow[i].s)-1;
            } 
            for(i=1; i<n; i++)
                printf("%d ", total[i]);
            printf("%d\n", total[n]);
        }
    }
  • 相关阅读:
    Spark 内核架构+宽依赖与窄依赖+基于Yarn的两种提交模式
    Spark RDD高级编程:基于排序机制的wordcount程序+二次排序+topn
    Spark RDD持久化原理+共享变量原理(Broadcast Variable和Accumulator)
    Spark RDD工作原理详解+RDD JAVA API编程
    Spark 程序设计详解
    剑指offer 39.知识迁移能力 平衡二叉树
    剑指offer 38.知识迁移能力 二叉树的深度
    ElasticSearch 倒排索引原理+document写入流程+数据恢复
    剑指offer 37.知识迁移能力 数字在排序数组中出现的次数
    剑指offer 36.时间空间效率的平衡 两个链表的第一个公共结点
  • 原文地址:https://www.cnblogs.com/Hilda/p/2629031.html
Copyright © 2011-2022 走看看