A.(n-2)*180
1 #include<cstdio> 2 #include<cstring> 3 #include<iostream> 4 #include<algorithm> 5 #define rep(i,l,r) for (int i=(l); i<=(r); i++) 6 typedef long long ll; 7 using namespace std; 8 9 int n; 10 11 int main(){ 12 scanf("%d",&n); printf("%d ",(n-2)*180); 13 return 0; 14 }
B.已确定的输局<=7
1 #include<cstdio> 2 #include<cstring> 3 #include<iostream> 4 #include<algorithm> 5 #define rep(i,l,r) for (int i=(l); i<=(r); i++) 6 typedef long long ll; 7 using namespace std; 8 9 int n,x; 10 char s[20]; 11 12 int main(){ 13 scanf("%s",s+1); n=strlen(s+1); 14 rep(i,1,n) if (s[i]=='x') x++; 15 if (x>7) puts("NO"); else puts("YES"); 16 return 0; 17 }
C.现只考虑A最后胜的情况,B同理。枚举A赢第n局之前B赢了多少局i,那么若不考虑平局概率则这种情况的发生概率为A^n*B^i*C(n-1+i,i),由期望显然可以得到,一场非平局的出现概率为1-C则期望1/(1-C)会出现一场非平局,共有n+i个非平局,则期望局数为(n+i)/(1-C)。
1 #include<cstdio> 2 #include<cstring> 3 #include<iostream> 4 #include<algorithm> 5 #define rep(i,l,r) for (int i=(l); i<=(r); i++) 6 typedef long long ll; 7 using namespace std; 8 9 const int N=2000010,mod=1e9+7; 10 int n,A,B,C,ans,fac[N],inv[N]; 11 12 int ksm(int a,int b){ 13 int res=1; 14 for (; b; a=1ll*a*a%mod,b>>=1) 15 if (b & 1) res=1ll*res*a%mod; 16 return res; 17 } 18 19 int cc(int n,int m){ return n<m ? 0 : 1ll*fac[n]*inv[m]%mod*inv[n-m]%mod; } 20 21 int main(){ 22 scanf("%d%d%d%d",&n,&A,&B,&C); int ii=ksm(100,mod-2); 23 A=1ll*A*ii%mod; B=1ll*B*ii%mod; C=1ll*C*ii%mod; 24 int a=1ll*ksm(A+B,mod-2)*A%mod,b=1ll*ksm(A+B,mod-2)*B%mod; 25 fac[0]=1; rep(i,1,n+n) fac[i]=1ll*fac[i-1]*i%mod; 26 inv[n+n]=ksm(fac[n+n],mod-2); for (int i=n+n; i; i--) inv[i-1]=1ll*inv[i]*i%mod; 27 rep(i,0,n-1){ 28 ans=(ans+1ll*ksm(b,i)*ksm(a,n)%mod*cc(n-1+i,i)%mod*ksm(1-C+mod,mod-2)%mod*(n+i))%mod; 29 ans=(ans+1ll*ksm(a,i)*ksm(b,n)%mod*cc(n-1+i,i)%mod*ksm(1-C+mod,mod-2)%mod*(n+i))%mod; 30 } 31 printf("%d ",ans); 32 return 0; 33 }
D.能取到最大值=总和-最大点权。于是把c从大到小排序,按DFS序分配即可。
1 #include<cstdio> 2 #include<cstring> 3 #include<iostream> 4 #include<algorithm> 5 #define rep(i,l,r) for (int i=(l); i<=(r); i++) 6 #define For(i,x) for (int i=h[x],k; i; i=nxt[i]) 7 typedef long long ll; 8 using namespace std; 9 10 const int N=20010; 11 int n,u,v,tot,ans,cnt,c[N],s[N],h[N],to[N<<1],nxt[N<<1]; 12 struct E{ int u,v; }e[N]; 13 void add(int u,int v){ to[++cnt]=v; nxt[cnt]=h[u]; h[u]=cnt; } 14 bool cmp(int a,int b){ return a>b; } 15 16 void dfs(int x,int fa){ 17 s[x]=c[++tot]; 18 For(i,x) if ((k=to[i])!=fa) dfs(k,x); 19 } 20 21 int main(){ 22 scanf("%d",&n); 23 rep(i,2,n) scanf("%d%d",&u,&v),e[i]=(E){u,v},add(u,v),add(v,u); 24 rep(i,1,n) scanf("%d",&c[i]); 25 sort(c+1,c+n+1,cmp); dfs(1,0); 26 rep(i,2,n) ans+=min(s[e[i].u],s[e[i].v]); 27 printf("%d ",ans); 28 rep(i,1,n) printf("%d ",s[i]); 29 return 0; 30 }
E.答案等于(x/d)*(x/d+1)*...*(x/d+(n-1))*d^n,这就是个阶乘乘上快速幂。注意特判d=0或x/d~x/d+n-1中出现0的情况。
1 #include<cstdio> 2 #include<algorithm> 3 #define rep(i,l,r) for (int i=(l); i<=(r); i++) 4 using namespace std; 5 6 const int mod=1e6+3; 7 int x,d,n,T,fac[mod+10]; 8 9 int ksm(int a,int b){ 10 int res=1; 11 for (; b; a=1ll*a*a%mod,b>>=1) 12 if (b & 1) res=1ll*res*a%mod; 13 return res; 14 } 15 16 int main(){ 17 fac[0]=1; rep(i,1,mod-1) fac[i]=1ll*fac[i-1]*i%mod; 18 for (scanf("%d",&T); T--; ){ 19 scanf("%d%d%d",&x,&d,&n); 20 if (!d){ printf("%d ",ksm(x,n)); continue; } 21 x=1ll*x*ksm(d,mod-2)%mod; 22 if (!x || x+n-1>=mod) puts("0"); 23 else printf("%lld ",1ll*fac[x+n-1]*ksm(fac[x-1],mod-2)%mod*ksm(d,n)%mod); 24 } 25 return 0; 26 }