zoukankan      html  css  js  c++  java
  • [HDU4609]3-idiots(生成函数+FFT)

    3-idiots

    Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 6343    Accepted Submission(s): 2216

    Problem Description
    King OMeGa catched three men who had been streaking in the street. Looking as idiots though, the three men insisted that it was a kind of performance art, and begged the king to free them. Out of hatred to the real idiots, the king wanted to check if they were lying. The three men were sent to the king's forest, and each of them was asked to pick a branch one after another. If the three branches they bring back can form a triangle, their math ability would save them. Otherwise, they would be sent into jail.
    However, the three men were exactly idiots, and what they would do is only to pick the branches randomly. Certainly, they couldn't pick the same branch - but the one with the same length as another is available. Given the lengths of all branches in the forest, determine the probability that they would be saved.
     
    Input
    An integer T(T≤100) will exist in the first line of input, indicating the number of test cases.
    Each test case begins with the number of branches N(3≤N≤105).
    The following line contains N integers a_i (1≤a_i≤105), which denotes the length of each branch, respectively.
     
    Output
    Output the probability that their branches can form a triangle, in accuracy of 7 decimal places.
     
    Sample Input
    2 4 1 3 3 4 4 2 3 3 4
     
    Sample Output
    0.5000000 1.0000000
     
    Source
     
    Recommend
    liuyiding

    代码用时:3h

    比较裸的生成函数应用。理清容斥关系就好。

    应为一个非常低级的错误(复数减法运算符重载出错),调了非常长的时间。

    以后还是应该尽量自己写程序以免受别人程序干扰,FFT和复数运算模板要熟练。

     1 #include<cmath>
     2 #include<cstdio>
     3 #include<algorithm>
     4 #include<cstring>
     5 #define rep(i,l,r) for (int i=l; i<=r; i++)
     6 #define mem(a) memset(a,0,sizeof(a))
     7 typedef long long ll;
     8 using namespace std;
     9 
    10 const int N=(1<<18)+100;
    11 const double pi=acos(-1.);
    12 int T,n,nn,m,q[N],rev[N];
    13 ll s[N];
    14 
    15 struct C{
    16    double x,y;
    17    C (double a=0,double b=0):x(a),y(b){}
    18 }a[N];
    19 C operator +(C a,C b){ return C(a.x+b.x,a.y+b.y); }
    20 C operator -(C a,C b){ return C(a.x-b.x,a.y-b.y); }
    21 C operator *(C a,C b){ return C(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x); }
    22 
    23 void DFT(C a[],int f){
    24    for (int i=0;i<nn;i++)
    25       if (i<rev[i]) swap(a[i],a[rev[i]]);
    26    for (int i=1; i<nn; i<<=1){
    27       C wn(cos(pi/i),f*sin(pi/i));
    28       for (int p=i<<1,j=0; j<nn; j+=p){
    29          C w(1,0);
    30          for (int k=0; k<i; k++,w=w*wn){
    31             C x=a[j+k],y=w*a[i+j+k]; a[j+k]=x+y; a[i+j+k]=x-y;
    32          }
    33       }
    34    }
    35    if (f==-1) rep(i,0,nn-1) a[i].x/=nn;
    36 }
    37 
    38 int main(){
    39    freopen("hdu4609.in","r",stdin);
    40    freopen("hdu4609.out","w",stdout);
    41    scanf("%d",&T);
    42    while (T--){
    43       m=0; mem(a); mem(q); mem(s); mem(rev); scanf("%d",&n);
    44       rep(i,1,n) scanf("%d",&q[i]),m=max(m,q[i]);
    45       rep(i,1,n) a[q[i]].x++;
    46       m<<=1; int L=0; for (nn=1; nn<=m; nn<<=1) L++;
    47       rep(i,0,nn-1) rev[i]=(rev[i>>1]>>1)|((i&1)<<(L-1));
    48       DFT(a,1); rep(i,0,nn-1) a[i]=a[i]*a[i]; DFT(a,-1);
    49       rep(i,1,m) s[i]=(ll)(a[i].x+0.5);
    50       rep(i,1,n) s[q[i]<<1]--;
    51       rep(i,1,m) s[i]=s[i-1]+(s[i]>>1);
    52       sort(q+1,q+n+1); ll ans=0,tot=1ll*n*(n-1)*(n-2)/6;
    53       rep(i,1,n) ans+=1ll*s[m]-s[q[i]]-1ll*(n-i+1)*(n-1)+1ll*(n-i+1)*(n-i)/2;
    54       printf("%.7lf
    ",(double)ans/tot);
    55    }
    56    return 0;
    57 }
  • 相关阅读:
    ChaosBlade x SkyWalking 微服务高可用实践
    工商银行基于 Dubbo 构建金融微服务架构的实践-服务发现篇
    阿里 双11 同款流控降级组件 Sentinel Go 正式 GA,助力云原生服务稳稳稳
    我在阿里巴巴做 Serverless 云研发平台
    「更高更快更稳」,看阿里巴巴如何修炼容器服务「内外功」
    「云原生上云」后的聚石塔是如何应对 双11 下大规模应用挑战的
    从零入门 Serverless | SAE 的远程调试和云端联调
    利用 Arthas 解决启动 StandbyNameNode 加载 EditLog 慢的问题
    Arthas 实践——生产环境排查 CPU 飚高问题
    RocketMQ 很慢?引出了一个未解之谜
  • 原文地址:https://www.cnblogs.com/HocRiser/p/8270651.html
Copyright © 2011-2022 走看看