zoukankan      html  css  js  c++  java
  • [HDU4609]3-idiots(生成函数+FFT)

    3-idiots

    Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 6343    Accepted Submission(s): 2216

    Problem Description
    King OMeGa catched three men who had been streaking in the street. Looking as idiots though, the three men insisted that it was a kind of performance art, and begged the king to free them. Out of hatred to the real idiots, the king wanted to check if they were lying. The three men were sent to the king's forest, and each of them was asked to pick a branch one after another. If the three branches they bring back can form a triangle, their math ability would save them. Otherwise, they would be sent into jail.
    However, the three men were exactly idiots, and what they would do is only to pick the branches randomly. Certainly, they couldn't pick the same branch - but the one with the same length as another is available. Given the lengths of all branches in the forest, determine the probability that they would be saved.
     
    Input
    An integer T(T≤100) will exist in the first line of input, indicating the number of test cases.
    Each test case begins with the number of branches N(3≤N≤105).
    The following line contains N integers a_i (1≤a_i≤105), which denotes the length of each branch, respectively.
     
    Output
    Output the probability that their branches can form a triangle, in accuracy of 7 decimal places.
     
    Sample Input
    2 4 1 3 3 4 4 2 3 3 4
     
    Sample Output
    0.5000000 1.0000000
     
    Source
     
    Recommend
    liuyiding

    代码用时:3h

    比较裸的生成函数应用。理清容斥关系就好。

    应为一个非常低级的错误(复数减法运算符重载出错),调了非常长的时间。

    以后还是应该尽量自己写程序以免受别人程序干扰,FFT和复数运算模板要熟练。

     1 #include<cmath>
     2 #include<cstdio>
     3 #include<algorithm>
     4 #include<cstring>
     5 #define rep(i,l,r) for (int i=l; i<=r; i++)
     6 #define mem(a) memset(a,0,sizeof(a))
     7 typedef long long ll;
     8 using namespace std;
     9 
    10 const int N=(1<<18)+100;
    11 const double pi=acos(-1.);
    12 int T,n,nn,m,q[N],rev[N];
    13 ll s[N];
    14 
    15 struct C{
    16    double x,y;
    17    C (double a=0,double b=0):x(a),y(b){}
    18 }a[N];
    19 C operator +(C a,C b){ return C(a.x+b.x,a.y+b.y); }
    20 C operator -(C a,C b){ return C(a.x-b.x,a.y-b.y); }
    21 C operator *(C a,C b){ return C(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x); }
    22 
    23 void DFT(C a[],int f){
    24    for (int i=0;i<nn;i++)
    25       if (i<rev[i]) swap(a[i],a[rev[i]]);
    26    for (int i=1; i<nn; i<<=1){
    27       C wn(cos(pi/i),f*sin(pi/i));
    28       for (int p=i<<1,j=0; j<nn; j+=p){
    29          C w(1,0);
    30          for (int k=0; k<i; k++,w=w*wn){
    31             C x=a[j+k],y=w*a[i+j+k]; a[j+k]=x+y; a[i+j+k]=x-y;
    32          }
    33       }
    34    }
    35    if (f==-1) rep(i,0,nn-1) a[i].x/=nn;
    36 }
    37 
    38 int main(){
    39    freopen("hdu4609.in","r",stdin);
    40    freopen("hdu4609.out","w",stdout);
    41    scanf("%d",&T);
    42    while (T--){
    43       m=0; mem(a); mem(q); mem(s); mem(rev); scanf("%d",&n);
    44       rep(i,1,n) scanf("%d",&q[i]),m=max(m,q[i]);
    45       rep(i,1,n) a[q[i]].x++;
    46       m<<=1; int L=0; for (nn=1; nn<=m; nn<<=1) L++;
    47       rep(i,0,nn-1) rev[i]=(rev[i>>1]>>1)|((i&1)<<(L-1));
    48       DFT(a,1); rep(i,0,nn-1) a[i]=a[i]*a[i]; DFT(a,-1);
    49       rep(i,1,m) s[i]=(ll)(a[i].x+0.5);
    50       rep(i,1,n) s[q[i]<<1]--;
    51       rep(i,1,m) s[i]=s[i-1]+(s[i]>>1);
    52       sort(q+1,q+n+1); ll ans=0,tot=1ll*n*(n-1)*(n-2)/6;
    53       rep(i,1,n) ans+=1ll*s[m]-s[q[i]]-1ll*(n-i+1)*(n-1)+1ll*(n-i+1)*(n-i)/2;
    54       printf("%.7lf
    ",(double)ans/tot);
    55    }
    56    return 0;
    57 }
  • 相关阅读:
    区块链
    git在IDEA中的使用
    hadoop linux 杂记
    idea java web 使用说明
    克隆虚拟机,解决网卡问题
    最小化CentOS6.7(64bit)---安装mysql5.5、jdk、tomcat
    爬虫学习笔记(1)--环境准备与正则表达式
    图论 BZOJ 3669 [Noi2014]魔法森林
    Manacher Ural 1297 Palindrome
    动态规划,贪心 APIO 2015 Sculptures
  • 原文地址:https://www.cnblogs.com/HocRiser/p/8270651.html
Copyright © 2011-2022 走看看