基本数据结构
除了用STL调用容器来实现基本的数据结构,
在一些特殊情况下(如:对时间、空间作限制;题目的要求比较特别的时候),
我们可以自己模拟数据结构。
以下给出几种常用数据结构的模拟,以及它们的特殊题型模板。
模拟栈
1. 普通栈
// tt表示栈顶
int stk[N], tt = 0;
// 向栈顶插入一个数
stk[ ++ tt] = x;
// 从栈顶弹出一个数
tt -- ;
// 栈顶的值
stk[tt];
// 判断栈是否为空
if (tt > 0)
*2. 单调栈
一种题型:
要求对序列之中的数,找它最近的某个符合性质的数
常见模型:找出每个数左边/右边离它最近的比它大/小的数
int tt = 0;
for (int i = 1; i <= n; i ++ )
{
while (tt && check(stk[tt], i)) tt -- ;
stk[ ++ tt] = i;
}
模拟队列
1.普通队列
// hh 表示队头,tt表示队尾
int q[N], hh = 0, tt = -1;
// 向队尾插入一个数
q[ ++ tt] = x;
// 从队头弹出一个数
hh ++ ;
// 队头的值
q[hh];
// 判断队列是否为空
if (hh <= tt)
2.*循环队列
// hh 表示队头,tt表示队尾的后一个位置
int q[N], hh = 0, tt = 0;
// 向队尾插入一个数
q[tt ++ ] = x;
if (tt == N) tt = 0;
// 从队头弹出一个数
hh ++ ;
if (hh == N) hh = 0;
// 队头的值
q[hh];
// 判断队列是否为空
if (hh != tt)
3.*单调队列
一种题型:滑动窗口
常见模型:找出滑动窗口中的最大值/最小值
int hh = 0, tt = -1;
for (int i = 0; i < n; i ++ )
{
while (hh <= tt && check_out(q[hh])) hh ++ ; // 判断队头是否滑出窗口
while (hh <= tt && check(q[tt], i)) tt -- ;
q[ ++ tt] = i;
}
模拟链表
①数组来模拟静态链表不容易超时
②题目要求根据第k个插入点来进行操作(针对所有的插入操作,即使删除),因此我们考虑用数组来保存,其下标就能保存每次k的值。
1.单链表
int head, e[N], ne[N], idx;
//* 初始化
void init()
{
head = -1;
idx = 0;
}
//* 将 x 插到头节点
void add_to_head(int x)
{
// 将值赋给新节点
e[idx] = x;
// 将新节点指向原来的头节点
ne[idx] = head;
// 将头节点更新为新节点
head = idx;
// idx更新备用
idx++;
}
//*将 x 这个点 插入到 第 k 个插入 的点后面
void add(int k, int x)
{
// 将值赋给新结点
e[idx] = x;
// 将新结点指向插入结点的下一个位置
ne[idx] = ne[k];
// 将新结点左边的结点指向新结点
ne[k] = idx;
// idx更新备用
idx++;
}
//* 将第k个插入的点 后面的一个点删除
void remove(int k)
{
ne[k] = ne[ne[k]];
}
2.双链表
int l[N],r[N],index,value[N];
void ini()
{
//初始化两个左右节点
//下标为0结点指向右边下标1结点,下标为1结点指向左边下标0结点
r[0]=1;
l[1]=0;
//更新节点索引
index=2;
}
void insert(int k,int x)//在第k个节点后插入x
{
//将值赋给新节点
value[index]=x;
//将新节点分别指向插入位置的右节点和左节点
r[index]=r[k], l[index]=k;
//将左右两边结点指向新结点
l[r[k]]=index, r[k]=index;
//更新节点索引
index++;
}
void remove(int k)
{
//删除第k个节点,第k-1的右指针指向原先第k个节点的右指针指向的节点
r[l[k]]=r[k];
//删除第k个节点,原先第k个节点的右指针指向的节点的左指针指向原先第k个节点的左指针指向
//的节点
l[r[k]]=l[k];
}
模拟堆
手写堆(支持修改任意一个操作)
// h[N]存储堆中的值, h[1]是堆顶,x的左儿子是2x, 右儿子是2x + 1
// ph[k]存储第k个插入的点在堆中的位置
// hp[k]存储堆中下标是k的点是第几个插入的
int h[N], ph[N], hp[N], size;
// 交换两个点,及其映射关系
void heap_swap(int a, int b)
{
swap(ph[hp[a]],ph[hp[b]]);
swap(hp[a], hp[b]);
swap(h[a], h[b]);
}
void down(int u)
{
int t = u;
if (u * 2 <= size && h[u * 2] < h[t]) t = u * 2;
if (u * 2 + 1 <= size && h[u * 2 + 1] < h[t]) t = u * 2 + 1;
if (u != t)
{
heap_swap(u, t);
down(t);
}
}
void up(int u)
{
while (u / 2 && h[u] < h[u / 2])
{
heap_swap(u, u / 2);
u >>= 1;
}
}
// O(n)建堆
for (int i = n / 2; i; i -- ) down(i);