zoukankan      html  css  js  c++  java
  • Pytorch系列教程-使用字符级RNN对姓名进行分类

    前言

    本系列教程为pytorch官网文档翻译。本文对应官网地址:https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

    系列教程总目录传送门:我是一个传送门

    本系列教程对应的 jupyter notebook 可以在我的Github仓库下载:

    下载地址:https://github.com/Holy-Shine/Pytorch-notebook

    1. 数据准备

    数据下载通道: 点击这里下载数据集。解压到当前工作目录。

    data/names 文件夹下面包含18个名字形如 [language].txt的文件。每个文件包含多条姓名,一个姓名一行。我们在之后需要将其编码格式(Unicode)转化为ASCII。

    通过下面的步骤,我们可以得到一个数据字典,形如{language:[name1,name2,...]} ,字典的键为语言,值为一个列表,包含对应文件夹下面的所有姓名。用变量 categoryline 分别标识键值对

    from __future__ import unicode_literals, print_function, division
    
    from io import open
    import glob
    import os
    
    def findFiles(path): return glob.glob(path)
    
    print(findFiles('data/names/*.txt'))
    
    import unicodedata
    import string
    
    all_letters = string.ascii_letters + " .,;'"
    n_letters = len(all_letters)
    
    # Turn a Unicode string to plain ASCII
    def unicodeToAscii(s):
        return ''.join(
            c for c in unicodedata.normalize('NFD', s)
            if unicodedata.category(c)!= 'Mn'
            and c in all_letters
        )
    
    print(unicodeToAscii('Ślusàrski'))
    
    # Build the category_lines dictinary, a list of names per language
    category_lines={}
    all_categories = []
    
    # Read a file and split into lines
    def readLines(filename):
        lines = open(filename, encoding='utf-8').read().strip().split('
    ')
        return [unicodeToAscii(line) for line in lines]
    
    for filename in findFiles('data/names/*.txt'):
        category = os.path.splitext(os.path.basename(filename))[0]
        all_categories.append(category)
        lines = readLines(filename)
        category_lines[category] = lines
    
    n_categories = len(all_categories)
    

    out:

    ['data/names\Arabic.txt', 'data/names\Chinese.txt', 'data/names\Czech.txt', 'data/names\Dutch.txt', 'data/names\English.txt', 'data/names\French.txt', 'data/names\German.txt', 'data/names\Greek.txt', 'data/names\Irish.txt', 'data/names\Italian.txt', 'data/names\Japanese.txt', 'data/names\Korean.txt', 'data/names\Polish.txt', 'data/names\Portuguese.txt', 'data/names\Russian.txt', 'data/names\Scottish.txt', 'data/names\Spanish.txt', 'data/names\Vietnamese.txt']
    Slusarski
    

    现在我们有了category_lines, 这是一个字典映射了每个语言和对应的名字。我们同样记录了 all_categories(一个包含所有语言的列表)和 n_categories 方便后续的引用

    print(category_lines['Italian'][:5])
    

    out: ['Abandonato', 'Abatangelo', 'Abatantuono', 'Abate', 'Abategiovanni']

    2. 将姓名转化为张量

    现在我们将所有的姓名组织好了,我们需要将他们转化为张量(Tensor)方便使用。

    为了表示单个字母,我们使用 one-hot 表示方法(size:<1 x n_letters>) 。一个 one-hot 向量是全0(激活字母为1)的向量。 例如:
    "b"=<0,1,0,0,0,...,0>

    于是每个姓名可以用形状为 <line_length x 1 x n_letters> 的 2D 矩阵表示。

    额外的一个维度是为了构建一个假的 batch(pytorch只接受mini_batch数据)

    import torch
    
    # Fine letter index from all_letters, e.g. "a"=0
    def letterToIndex(letter):
        return all_letters.find(letter)
    
    # Just for demonstration, turn a letter into a <1 x n_letters> Tensor
    def letterToTensor(letter):
        tensor = torch.zeros(1, n_letters)
        tensor[0][letterToIndex(letter)]=1
        return tensor
    
    # Turn a line into a <line_length x 1 x n_letters>,
    # or an array of one_hot letter vectors
    def lineToTensor(line):
        tensor = torch.zeros(len(line), 1, n_letters)
        for li, letter in enumerate(line):
            tensor[li][0][letterToIndex(letter)]=1
        return tensor
    
    print(letterToTensor('J'))
    print(lineToTensor('Jones').size())
        
    

    out:

    tensor([[ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
              0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
              0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  1.,
              0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
              0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.]])
    torch.Size([5, 1, 57])
    

    3. 构建网络

    autograd 出现前, 在Torch中创建一个循环神经网络需要在每一个时间步克隆层参数。网络层持有一个隐藏状态和梯度信息,而目前这些完全交由计算图本身来处理。这意味着你能自己用一个很纯净的方式来实现一个 RNN——仅仅使用一些常规的前馈层。

    这个RNN模块只有两个线性层,以输入和隐藏状态为输入,LogsSoftmax 层为输出。

    如下图所示:

    import torch.nn as nn
    
    class RNN(nn.Module):
        def __init__(self, input_size, hidden_size, output_size):
            super(RNN, self).__init__()
            
            self.hidden_size = hidden_size
            
            self.i2h = nn.Linear(input_size + hidden_size, hidden_size)
            self.i2o = nn.Linear(input_size + hidden_size, output_size)
            self.softmax = nn.LogSoftmax(dim=1)
            
        def forward(self, input, hidden):
            combined = torch.cat([input, hidden], 1)
            hidden = self.i2h(combined)
            output = self.i2o(combined)
            output = self.softmax(output)
            return output, hidden 
        
        def initHidden(self):
            return torch.zeros(1, self.hidden_size)
        
    n_hidden = 128
    rnn = RNN(n_letters, n_hidden, n_categories)
    

    为了运行这个网络,我们需要传递输入和前一层传递下来的隐藏状态(初始化为0)。我们使用最后一层的输出作为预测的结果

    input = letterToTensor('A')
    hidden = torch.zeros(1, n_hidden)
    
    output, next_hidden =  rnn(input, hidden)
    

    out:

    tensor([[-2.8338, -2.9645, -2.9535, -2.9355, -2.9281, -2.8521, -2.8352,
             -2.9544, -2.8516, -2.8932, -2.7696, -2.8142, -2.8888, -2.7888,
             -2.8991, -2.9971, -2.9783, -2.9278]])
    

    正如你所看到的,输出是<1 x n_categories>的Tensor,其中每个项目都是该类别的可能性(越大代表可能性越高)。

    4. 训练

    4.1 训练准备

    在进入训练之前,我们应该做一些辅助函数。第一个是解释网络的输出,我们知道这是每个类别的可能性。这里使用Tensor.topk来获得最大值的索引

    def categoryFromOutput(output):
        top_n, top_i = output.topk(1)
        category_i = top_i[0].item()
        return all_categories[category_i], category_i
    
    print(categoryFromOutput(output))
    

    out:

    ('Japanese', 10)
    

    同时我们还想快速获得一个训练样本(姓名及其所属语言):

    import random
    
    def randomChoice(l):
        return l[random.randint(0, len(l)-1)]
    
    def randomTrainingExample():
        category = randomChoice(all_categories)
        line = randomChoice(category_lines[category])
        category_tensor = torch.tensor([all_categories.index(category)],dtype=torch.long)
        line_tensor = lineToTensor(line)
        return category, line, category_tensor, line_tensor
    
    for i in range(10):
        category, line, category_tensor, line_tensor = randomTrainingExample()
        print('category = ', category, '/ line =', line)
    

    out:

    category =  Czech / line = Morava
    category =  English / line = Linsby
    category =  Dutch / line = Agteren
    category =  Scottish / line = Mccallum
    category =  German / line = Laurenz
    category =  Chinese / line = Long
    category =  Italian / line = Pittaluga
    category =  Japanese / line = Sugitani
    category =  Portuguese / line = Duarte
    category =  French / line = Macon
    

    4.2 训练网络

    现在,训练这个网络所需要的只是展示一堆例子,让它做出猜测,然后告诉它是否错了。

    对于损失函数的选择,nn.NLLLoss是合适的,因为RNN的最后一层是nn.LogSoftmax

    criterion = nn.NLLLoss()
    

    每个循环的训练做了如下的事情:

    • 创建输入和目标张量
    • 初始隐藏状态置0
    • 读取每个字母和
      • 保持隐藏状态给下一个字母
    • 比较最终输出到目标
    • 反向传播
    • 返回输出和丢失
    learning_rate = 0.005
    
    def train(category_tensor, line_tensor):
        hidden = rnn.initHidden()
        rnn.zero_grad()
        
        for i in range(line_tensor.size()[0]):
            output,hidden = rnn(line_tensor[i],hidden)
        
        loss = criterion(output, category_tensor)
        loss.backward()
        
        for p in rnn.parameters():
            p.data.add_(-learning_rate, p.grad.data)
            
        return output, loss.item()
    

    现在我们只需要用一堆例子来运行它。由于训练函数同时返回输出和损失,我们可以打印其猜测并跟踪绘图的损失。由于有1000个示例,我们只打印每个print_every示例,并取平均损失。

    import time
    import math
    
    n_iters = 100000
    print_every = 5000
    plot_every = 1000
    
    current_loss = 0
    all_losses = []
    
    def timeSince(since):
        now = time.time()
        s = now - since
        m = math.floor(s/60)
        s -= m*60
        return '%dm %ds'%(m,s)
    
    start = time.time()
    
    for iter in range(1, n_iters+1):
        category, line, category_tensor, line_tensor = randomTrainingExample()
        output, loss = train(category_tensor, line_tensor)
        current_loss+=loss
        
        if iter % print_every == 0:
            guess, guess_i = categoryFromOutput(output)
            correct = '✓' if guess == category else '✗ (%s)' % category
            print('%d %d%% (%s) %.4f %s / %s %s' % (iter, iter / n_iters * 100, timeSince(start), loss, line, guess, correct))
            
        if iter%plot_every==0:
            all_losses.append(current_loss / plot_every)
            current_loss = 0
    

    out:

    5000 5% (0m 9s) 2.2742 Bazovski / Polish ✗ (Russian)
    10000 10% (0m 17s) 2.8028 Rossum / Arabic ✗ (Dutch)
    15000 15% (0m 24s) 0.5319 Tsahalis / Greek ✓
    20000 20% (0m 32s) 1.9478 Ojeda / Spanish ✓
    25000 25% (0m 40s) 3.0673 Salomon / Russian ✗ (Polish)
    30000 30% (0m 47s) 1.7099 Hong / Chinese ✗ (Korean)
    35000 35% (0m 55s) 1.6736 Ruaidh / Irish ✓
    40000 40% (1m 3s) 0.0943 Cearbhall / Irish ✓
    45000 45% (1m 10s) 1.6163 Severin / Dutch ✗ (French)
    50000 50% (1m 18s) 0.1879 Horiatis / Greek ✓
    55000 55% (1m 26s) 0.0733 Eliopoulos / Greek ✓
    60000 60% (1m 34s) 0.8175 Pagani / Italian ✓
    65000 65% (1m 41s) 0.4049 Murphy / Scottish ✓
    70000 70% (1m 49s) 0.5367 Seo / Korean ✓
    75000 75% (1m 58s) 0.4234 Brzezicki / Polish ✓
    80000 80% (2m 6s) 0.8812 Ayugai / Japanese ✓
    85000 85% (2m 13s) 1.4328 Guirguis / Greek ✗ (Arabic)
    90000 90% (2m 21s) 0.3510 Dam / Vietnamese ✓
    95000 95% (2m 29s) 0.0634 Teunissen / Dutch ✓
    100000 100% (2m 37s) 0.4243 Laganas / Greek ✓
    

    4.3 可视化结果

    import matplotlib.pyplot as plt
    import matplotlib.ticker as ticker
    %matplotlib inline
    plt.figure()
    plt.plot(all_losses)
    

    out:

    5. 评估模型

    为了了解网络在不同类别上的表现如何,我们将创建一个混淆矩阵,指示每个实际语言(行)网络猜测的哪种语言(列)。为了计算混淆矩阵,使用evaluate()通过网络运行一组样本.

    confusion = torch.zeros(n_categories, n_categories)
    n_confusion = 10000
    
    def evaluate(line_tensor):
        hidden = rnn.initHidden()
        
        for i in range(line_tensor.size()[0]):
            output,hidden = rnn(line_tensor[i], hidden)
        return output
    
    for i in range(n_confusion):
        category, line, category_tensor, line_tensor = randomTrainingExample()
        output = evaluate(line_tensor)
        guess, guess_i = categoryFromOutput(output)
        category_i = all_categories.index(category)
        confusion[category_i][guess_i]+=1
        
    for i in range(n_categories):
        confusion[i]/=(confusion[i].sum())
        
    fig = plt.figure()
    
    ax = fig.add_subplot(111)
    cax = ax.matshow(confusion.numpy())
    fig.colorbar(cax)
    
    ax.set_xticklabels(['']+all_categories,rotation=90)
    ax.set_yticklabels(['']+all_categories)
    
    ax.xaxis.set_major_locator(ticker.MultipleLocator(1))
    ax.yaxis.set_major_locator(ticker.MultipleLocator(1))
    
    plt.show()
    
    

    out:

    你可以从主轴上挑出明亮的点,它们可以显示出错误猜测的语言,例如:韩语猜测为汉语,意大利语猜测为西班牙语。希腊语的表现似乎很好,但是英语很差(可能是因为与其他语言的重叠较多)

  • 相关阅读:
    抽象工厂模式
    工厂方法模式
    assert断言
    非日志警告
    requests获取所有状态码
    在线工具、资料
    重定向、feed输出:控制台输出的内容存放到文件
    正则表达式python
    python提取相对路径
    logger类
  • 原文地址:https://www.cnblogs.com/HolyShine/p/9844404.html
Copyright © 2011-2022 走看看