zoukankan      html  css  js  c++  java
  • 剑指Offer_#14-2_剪绳子

    剑指Offer_#14-2_剪绳子

    Contents

    题目

    给你一根长度为 n 的绳子,请把绳子剪成整数长度的 m 段(m、n都是整数,n>1并且m>1),每段绳子的长度记为 k[0],k[1]...k[m] 。请问k[0]*k[1]*...*k[m] 可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。

    答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。

    示例 1:
    输入: 2
    输出: 1
    解释: 2 = 1 + 1, 1 × 1 = 1

    示例 2:
    输入: 10
    输出: 36
    解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36
     
    提示:
    2 <= n <= 1000

    思路分析

    和前一题相比,唯一的区别就是这里的输入范围变大的,所以导致最后的结果可能会超过int所表示的最大范围,所以需要考虑如何求这个大数的余数。
    需要注意的是,求余和求模并不完全相同。 由于此题当中涉及到的被除数和除数都是正整数,所以求余和求模运算结果相同,但是如果除数和被除数的符号不同,那么求余和求模的结果不是相同的。
    关于大数求余,其实更像一个数学问题,需要先理解数学推导,才能写出正确代码。

    求余运算和求模运算的区别

    通常取模运算也叫取余运算,它们返回结果都是余数 ,rem 和 mod 唯一的区别在于:

    • 当 x 和 y 的正负号一样的时候,两个函数结果是等同的;
    • 当 x 和 y 的符号不同时,rem 函数结果的符号和 x 的一样,而 mod 和 y 一样。

    具体是因为这两个函数的实现机制不同
    对于整数 a,b 来说,取模运算或者求余运算的方法要分如下两步:
    1、求整数商:c=a/b
    2、计算模或者余数:r=a-(c*b)
    求模运算和求余运算在第一步不同
    取余运算在计算商值向0方向舍弃小数位
    取模运算在计算商值向负无穷方向舍弃小数位
    例如:4/(-3) 约等于 -1.3
    在取余运算时候商值向 0 方向舍弃小数位为 -1
    在取模运算时商值向负无穷方向舍弃小数位为-2
    所以
    4rem(-3)=1 4mod(-3)=-2

    java,python中的取余和取模运算

    • 在java中,%是取余运算,英文是remainder;Math.floorMod()是取模运算。
      • 大部分编程语言中%结果与被除数同符号。都是这样,比如C,Go,C#,Java,Rust,Swift,JavaScript,PHP。
    • 在python中,%是取模运算,英文是modulus;math.fmod是取余运算。
      • python中,%运算结果与除数同符号,所以与java是相反的。

    题解1

    这是快速幂取余算法。
    理解快速幂取余算法,首先需要理解快速幂算法(参考加速幂运算 | 一瓜算法小册),快速幂取余算法是快速幂算法的一个扩展,仅仅是在迭代过程中增加了一个取余操作。
    与循环求余相比,循环求余每次迭代时指数增加1,而快速幂求余每次迭代时指数变为原来的2倍,所以迭代次数变为对数级。
    具体原理可参考快速幂取模算法 | 一瓜算法小册,篇幅较长,不再赘述。

    class Solution {
        public int cuttingRope(int n) {
            if(n <= 3) return n-1;
            int b = n % 3,p = 1000000007;
            long rem = 1,x = 3;
            for(int a = n/3 - 1;a > 0;a /= 2){//a的初始值为什么是n/3-1?这是长度为3的绳子段数-1。循环过程就是计算3^(a-1)%p。
                if(a % 2 == 1) rem = (rem * x) % p;//逢奇数,需要特殊处理
                x = (x * x) % p;
            }
            if(b == 0) return (int)(rem * 3 % p);//3^a%p
            if(b == 1) return (int)(rem * 4 % p);//3^(a-1)*4%p
            return (int)(rem * 6 % p);//b==2时,3^a*2%p
        }
    }

    复杂度分析

    由于每次指数减小一倍,时间复杂度是

    题解2

    贪心算法,也就是直接分析出每一次都是剪下长度为3的绳子最好,所以直接通过循环模拟这个过程,每次绳子长度减小3,结果乘以3。
    循环结束的结果分为三种:
    1.n=2,等于说无限除以3,最后余下绳子长度为2,此时将res乘以2即可
    2.n=3,绳子全部用完,直接所有3相乘即可
    3.n=4,等于说余下绳子长度为1,因为4%3=1,但是3<2*2,也就是4本身,故最后乘4
    这里的求余方式是循环求余算法,复杂度稍高,但是更加直观。
    循环求余法的依据是如下公式(同余定理),其中的代表求余运算

    也就是说,每一轮都进行一次求余操作,再迭代,和先迭代完成后再进行求余操作,结果相同。

    class Solution {
        public int cuttingRope(int n) {
            if(n<=3) return n-1;
            long res=1;
            while(n>4){
                res*=3;
                res=res%1000000007;
                n-=3;
            }
            return (int)(res*n%1000000007);
        }
    }
    

    复杂度分析

    相比二分求余法,这个方法的复杂度稍高,是

  • 相关阅读:
    odoo14系列笔记-基本进销存(二)
    odoo14系列笔记-基本进销存(一)
    PVE另一种方法使用中科大的镜像服务器 NGINX反向代理
    git 国内加速
    VirtualBox开启套娃模式-打开嵌套 VT-x/AMD-V 功能
    K8S集群安装(基于DEIBAN,proxmox)
    JS语法 ES6、ES7、ES8、ES9、ES10、ES11、ES12新特性
    8个非常实用的Vue自定义指令
    require和import的区别
    js异步加载之defer、async、type=module
  • 原文地址:https://www.cnblogs.com/Howfars/p/13166859.html
Copyright © 2011-2022 走看看