zoukankan      html  css  js  c++  java
  • Hall 定理

    Hall 定理

    之前只记了 hall 定理的结论,这里来做一下证明

    结论

    左部点大小 (|X|) 右部点大小 (|Y|),满足 (|X| le |Y|)

    最大匹配即为 (|X|-max_{s subseteq X}{(|S|-|to_s|, 0)})

    有最大匹配时即为任意一个子集出发的邻点个数大于等于本身

    证明

    必要性显然,来证充分性

    如果没有完美匹配,找到左部点里一个没有匹配的点 x,它一定可以找到一条出边,如果右部图的那个点 y 没有匹配,显然答案加一。否则 y 找到和它匹配的那个点 tx,断掉匹配,重新和 x 匹配。根据 Hall 定理,两点对一点是不存在的,所以 tx 还可以找到另外一个出边。一直找下去,直到这个集合里有了 n 个点,第 n 个点一定能找到另外一个没有匹配的点。证毕。

  • 相关阅读:
    python scrapter
    java Clone
    Burp Suite使用
    Drools 简单应用实例1
    Metasploitable 2 备译
    java drools material
    设计模式之Facade/Adaptor/Proxy示例
    sqlmap example
    Mutillidae setup
    groovy template应用
  • 原文地址:https://www.cnblogs.com/Hs-black/p/13746725.html
Copyright © 2011-2022 走看看