zoukankan      html  css  js  c++  java
  • 超参数(Hyperparameter)

    什么是超参数?

    机器学习模型中一般有两类参数:一类需要从数据中学习和估计得到,称为模型参数(Parameter)---即模型本身的参数。比如,线性回归直线的加权系数(斜率)及其偏差项(截距)都是模型参数。还有一类则是机器学习算法中的调优参数(tuning parameters),需要人为设定,称为超参数(Hyperparameter)。比如,正则化系数λ,决策树模型中树的深度。

    参数和超参数的区别:

    模型参数是模型内部的配置变量,需要用数据估计模型参数的值;模型超参数是模型外部的配置,需要手动设置超参数的值。机器学习中一直说的“调参”,实际上不是调“参数”,而是调“超参数”。

    哪些属于超参数?

    梯度下降法中的学习速率α,迭代次数epoch,批量大小batch-size,k近邻法中的k(最相近的点的个数),决策树模型中树的深度,等等。

    超参数的优化:

    有四种主要的策略可用于搜索最佳配置:

    • 照看(babysitting,又叫试错)
    • 网格搜索
    • 随机搜索
    • 贝叶斯优化
  • 相关阅读:
    Kafka
    js操作json
    Javascript的console.log()用法
    js中的instanceof运算符
    JS阻止事件冒泡的3种方法之间的不同
    js string to date
    JavaScript RegExp.$1
    JS正则表达式大全
    js data日期初始化的5种方法
    javascript和jquey的自定义事件小结
  • 原文地址:https://www.cnblogs.com/HuZihu/p/10641972.html
Copyright © 2011-2022 走看看