zoukankan      html  css  js  c++  java
  • Pandas的基本用法

    Pandas是使用python进行数据分析不可或缺的第三方库。我们已经知道,NumPy的ndarray数据结构能够很好地进行数组运算,但是当我们需要进行为数据添加标签,处理缺失值,对数据分组,创建透视表等任务时,NumPy的的限制就非常明显了。而Pandas是在NumPy基础上建立的新程序库,提供了高效的Series和DataFrame数据结构。DataFrame本质上是一种带行列标签,支持同类型数据和缺失值的二维数组(Series是一维数组)。在此之前,”数据清洗“(Data Munging)往往要耗费人们大量的时间和精力,而Pandas给人们进行提供了一个有效的工具。

    一. 导入pandas库

    import pandas as pd

    二. 创建Series对象

    1. 通过python列表创建

    data=pd.Series([1,2,3,4], index=['a','b','c','d'])
    a    1
    b    2
    c    3
    d    4

    (注:Series对象和numpy数组的区别:numpy数组通过隐式定义的整数索引获取数值;而pandas的Series对象用显式定义的索引与数值关联。)

    2. 通过python字典创建

    data=pd.Series({'A':1,'B':2,'C':4})
    A    1
    B    2
    C    4

    三. 创建DataFrame对象

    1. 通过python字典创建

    data=pd.DataFrame({'a':[1,2,3],'b':'foo','c':pd.Categorical(['me','you','it'])})
       a    b    c
    0  1  foo   me
    1  2  foo  you
    2  3  foo   it

    2. 通过Series对象创建

    series=pd.Series({'A':1,'B':2,'C':4})
    data=pd.DataFrame(series, columns=['number'])
       number
    A       1
    B       2
    C       4

    3. 通过由Series对象构成的字典创建

    series1=pd.Series({'A':1,'B':2,'C':4})
    series2=pd.Series([1,2,3,4], index=['A','B','C','D'])
    data=pd.DataFrame({'number1':series1, 'number2':series2})
       number1  number2
    A      1.0        1
    B      2.0        2
    C      4.0        3
    D      NaN        4

    4. 通过numpy二维数组创建

    data=pd.DataFrame(np.random.rand(3,2), index=['a','b','c'], columns=['N1','N2'])
             N1        N2
    a  0.642597  0.869653
    b  0.160318  0.663777
    c  0.807979  0.043525

    5. 从文件中读取

    pd.read_excel(filepath) --- 读取excel文件

    pd.read_csv(filepath, sep='') --- 读取csv文件,sep表示分隔符,默认以逗号分隔,可改成其他,如以tab分隔---sep=' '

    pd.read_json(filepath) --- 读取json文件

    四. 查看数据的属性(attributes)

    1. info() --- 查看数据属性简介,包括行列索引,数据类型,占用多少内存

    2. shape --- 查看数据的形状(每个维度的大小)

    3. index --- 查看Series对象和DataFrame对象的行索引

    4. columns --- 查看DataFrame对象的列标签

    5. values --- 查看对象的值

    6. dtypes --- 查看数据类型

    7. describe() --- 查看每列数据的描述统计量

    五. 索引(Indexing)和切片(Slicing)

    1. data.loc[row_index_name, : ] --- 显式选取某行

    2. data.iloc[row_index_from_zero, : ] --- 隐式选取某行

    3. data['column_name'] --- 选取某列

    4. data.loc[row_index_name1: row_index_name2, : ] --- 显式选取连续的几行

    5. data.iloc[row_index_from_zero1: row_index_from_zero2, : ] --- 隐式选取连续的几行

    6. data.loc[ : , 'column_name1': 'column_name2'] --- 显式选取连续的几列

    7. data.iloc[ : , column_index_from_zero1: column_index_from_zero2] --- 隐式选取连续的几列

    8. data.loc[row_index_name1: row_index_name2, 'column_name1': 'column_name2'] --- 显式选取连续的几行几列

    9. data.iloc[row_index_from_zero1: row_index_from_zero2, column_index_from_zero1: column_index_from_zero2] --- 隐式选取连续的几行几列

    10. data.loc[[row_index_name1,row_index_name2, ...], :] --- 显式选取不连续的几行

    11. data.iloc[[row_index_from_zero1, row_index_from_zero2, ...], :] --- 隐式选取不连续的几行

    12. data.loc[ :, [column_name1, column_name2, ...]] --- 显式选取不连续的几列

    13. data.iloc[ :, [column_index_from_zero1, column_index_from_zero2, ...]] --- 隐式选取不连续的几行

    六. 添加数据

    1. data.loc[new_row_index]=[.....] --- 添加新行

    2. data['new_column_name']=[.....] --- 添加新列

    3. data.insert(column_index, 'new_column_name',[...]) --- 在指定位置插入列

    七. 删除数据

    1. data.drop(row_index_from_zero, axis=0,inplace=True) --- 删除某行

    2. data.drop('column_name', axis=1,inplace=True) --- 删除某列

    八. 更改数据

    1. rename(columns={'old_column_name':'new_column_name'}, inplace=True) --- 更改某个列名

    2. set_index('col_name') --- 更改索引(索引变为选择的列)

    3. reset_index() --- 更新索引

    4. replace(old_value, new_value, inplace=True) --- 替换数据

    九. 重复值

    1. duplicated() --- 根据数据每一行是否有重复值,返回相应的布尔值

    2. drop_duplicates() --- 返回已剔除有重复值的行的数据

    十. 缺失值

    1. pd.isnull(data) --- 返回一个布尔类型的掩码,标记数据是否有缺失值,如有缺失值则标记True

    2. pd.notnull(data) ---  返回一个布尔类型的掩码,标记数据是否没有缺失值,如没有缺失值则标记True

    3. dropna(axis=0, how='any') --- 返回剔除缺失值的数据

    4. fillna(value, axis=0, method='backfill') --- 返回填充了缺失值的数据副本

    十一. 唯一值

    1. pd.unique(values) --- 显示唯一值

    2. nunique(axis=0, dropna=True) --- 显示唯一值的个数

    十二. 转换数据类型

    1. astype(dtype)      注:可转换的数据类型有:int, str, float ...  ;     

    2. pd.to_datetime(str) --- 转换成时间序列

    十三. 使用掩码过滤((Mask Arrays)

    1. data[mask]              注:一些条件表示方法:&(and) ,|(or),~(not),.isin(in)

    十四. 排序

    1. sort_index(axis=0, ascending=True) --- 按索引排序

    2. sort_values(by, axis=0, ascending=True) --- 按内容排序

    十五. 数据分组

    1. groupby(by=None, axis=0) --- 把数据按某一列分组             注: groupby()是一个数据分组的对象,它实际上还没有进行任何计算,只是一个暂时存储的容器,要使用累计方法后才会进行计算。因此,groupby一般与累计函数搭配使用。

    累计方法有:count(), mean(), median(), min(), max(), std(), prod(), sum() 等等            注:参数axis=0表示按行进行计算,axis=1表示按列进行计算,默认axis=1;如果需要对特定Series使用两个及以上的累计方法,请使用agg()。如果需要对整个DataFrame(按行或按列)使用自定义的累计方法,请使用apply()

    十六. 透视表

    1. pd.pivot_table(data, values=None, index=None, columns=None, aggfunc='mean') --- 以index为行索引,columns为列索引,累计方法为aggfunc,对data的values作透视表

    十七. 合并数据

    1. pd.concat([d1,d2], axis=0, join='outer', ignore_index=False) --- 按某一个轴的方向合并d1和d2

    2. d1.merge(d2, how='inner', on=None, left_on=None, right_on=None) --- 把某一列作为键进行合并,假如两张表作为键的列名称不一致,那么可以通过设置left_on和left_on来解决

    注:how可选"left", "right", "outer", "inner"

           "left":类似于SQL的left outer join;

           "right":类似于SQL的right outer join;

           "outer":并集,类似于SQL的full outer join;

           "inner":交集,类似于SQL的inner join;

    3. d1.join(d2, on=None, how='left') --- 按索引合并d1和d2

    十八. 分隔数据

    1. str.split() --- 分割字符串

    2. pd.cut(xx, bins, labels=None) --- 按组数bins给数据分区,每组的组距相同

    3. pd.qcut(xx, quantiles, labels=None) --- 根据数值出现的频率进行分区,组距自动计算,确保每组的数量相同

    十九. 其他

    1. stack() --- 将普通索引的DataFrame转化成多级索引的Series

    2. unstack() --- 将多级索引的Series转化成普通索引的DataFrame

    3. value_counts() --- 统计数值出现的次数

    4. str.lower() --- 转换成小写字母

    5. str.upper() --- 转换成大写字母

    6. str.contains(str) --- 检查是否包含某个字符

  • 相关阅读:
    如何删除Windows的服务
    在使用ORACLE时常用到的命令和脚本
    windows 查看端口使用情况
    jQuery获取及设置单选框,多选框,文本框内容
    disabled="disabled" readonly="readonly" type="hidden"提交表单的区别
    @Column标记持久化详细说明
    jQuery核心及其工具
    Hibernate JPA注解说明
    php要点
    jQuery中的动画与效果
  • 原文地址:https://www.cnblogs.com/HuZihu/p/11005142.html
Copyright © 2011-2022 走看看