zoukankan      html  css  js  c++  java
  • bzoj1013 [JSOI2008]球形空间产生器sphere

    题目链接

    第一次写高斯消元

    注意考虑分母、分子为零的情况

     1 #include<algorithm>
     2 #include<iostream>
     3 #include<cstdlib>
     4 #include<cstring>
     5 #include<cstdio>
     6 #include<string>
     7 #include<cmath>
     8 #include<ctime>
     9 #include<queue>
    10 #include<stack>
    11 #include<map>
    12 #include<set>
    13 #define rre(i,r,l) for(int i=(r);i>=(l);i--)
    14 #define re(i,l,r) for(int i=(l);i<=(r);i++)
    15 #define Clear(a,b) memset(a,b,sizeof(a))
    16 #define inout(x) printf("%d",(x))
    17 #define douin(x) scanf("%lf",&x)
    18 #define strin(x) scanf("%s",(x))
    19 #define LLin(x) scanf("%lld",&x)
    20 #define op operator
    21 #define CSC main
    22 typedef unsigned long long ULL;
    23 typedef const int cint;
    24 typedef long long LL;
    25 using namespace std;
    26 double f(const double &a){return a*a;}
    27 const double eps=1e-8;
    28 void inin(int &ret)
    29 {
    30     ret=0;int f=0;char ch=getchar();
    31     while(ch<'0'||ch>'9'){if(ch=='-')f=1;ch=getchar();}
    32     while(ch>='0'&&ch<='9')ret*=10,ret+=ch-'0',ch=getchar();
    33     ret=f?-ret:ret;
    34 }
    35 int n;
    36 double xl[11],temp;
    37 double a[11][11],b[11],x[11];
    38 int main()
    39 {
    40     freopen("in.in","r",stdin);
    41     freopen("out.out","w",stdout);
    42     inin(n);
    43     re(i,1,n)douin(xl[i]);
    44     re(i,1,n)re(j,1,n)
    45     {
    46         douin(temp);
    47         a[i][j]=2*(temp-xl[j]);
    48         a[i][n+1]+=f(temp)-f(xl[j]);
    49     }
    50     re(i,1,n-1)
    51     {
    52         if(abs(a[i][i]<eps))
    53         re(j,i+1,n)if(abs(a[j][i])>eps)
    54         {
    55             re(k,1,n+1)a[i][k]+=a[j][k];
    56             break;
    57         }
    58         re(j,i+1,n)
    59         {
    60             if(abs(a[j][i])<eps)continue;
    61             double bi=a[i][i]/a[j][i];
    62             re(k,i,n+1)a[j][k]*=bi;
    63             re(k,i,n+1)a[j][k]-=a[i][k];
    64         }
    65     }
    66     rre(i,n,1)
    67     {
    68         x[i]=a[i][n+1]/a[i][i];
    69         rre(j,i-1,1)a[j][n+1]-=a[j][i]*x[i],a[j][i]=0;
    70     }
    71     re(i,1,n)printf("%.3f%c",x[i],i==n?'
    ':' ');
    72      return 0;
    73 }
  • 相关阅读:
    最大流算法FordFulkson方法的基本思想与EdmondKarp算法
    nefu 474 The Perfect StallHal Burch 二分图最大匹配
    NEFU 485 分配问题
    jQuery插件tablesorter
    flashplayer
    个人薪酬查询
    Shockwave
    phpwind安装
    aspx特殊符号说明
    uploadfy火狐兼容性问题
  • 原文地址:https://www.cnblogs.com/HugeGun/p/5252736.html
Copyright © 2011-2022 走看看