zoukankan      html  css  js  c++  java
  • CodeForces999E 双dfs // 标记覆盖 // tarjan缩点

    http://codeforces.com/problemset/problem/999/E

    题意 有向图    给你n个点,m条边,以及一个初始点s,问你至少还需要增加多少条边,使得初始点s与剩下其他的所有点都连通。

    第一个想法自然是通过上标记的方法,对每一个入度为0的点跑dfs。

    但是问题在于剩下没有上标记的点,是成环的点。这些点不能有效的形成我们希望的拓扑序。

    第一个想法是可以考虑上特殊标记,顺序枚举每个环上的点跑dfs,对每个随机跑的点上标记,在dfs的过程中如果可以经过之前枚举跑到的起点,就去掉这个点的标记,随后统计特殊标记的数量,经过测试,确实可以AC

    #include <map>
    #include <set>
    #include <ctime>
    #include <cmath>
    #include <queue>
    #include <stack>
    #include <vector>
    #include <string>
    #include <cstdio>
    #include <cstdlib>
    #include <cstring>
    #include <sstream>
    #include <iostream>
    #include <algorithm>
    #include <functional>
    using namespace std;
    #define For(i, x, y) for(int i=x;i<=y;i++)  
    #define _For(i, x, y) for(int i=x;i>=y;i--)
    #define Mem(f, x) memset(f,x,sizeof(f))  
    #define Sca(x) scanf("%d", &x)
    #define Scl(x) scanf("%lld",&x);  
    #define Pri(x) printf("%d
    ", x)
    #define Prl(x) printf("%lld
    ",x);  
    #define CLR(u) for(int i=0;i<=N;i++)u[i].clear();
    #define LL long long
    #define ULL unsigned long long  
    #define mp make_pair
    #define PII pair<int,int>
    #define PIL pair<int,long long>
    #define PLL pair<long long,long long>
    #define pb push_back
    #define fi first
    #define se second 
    typedef vector<int> VI;
    const double eps = 1e-9;
    const int maxn = 5010;
    const int INF = 0x3f3f3f3f;
    const int mod = 1e9 + 7; 
    int N,M,tmp,K,s; 
    bool vis[maxn];
    bool vis2[maxn];
    bool vis3[maxn];
    int ind[maxn];
    struct Edge{
        int to,next;
    }edge[maxn];
    int head[maxn],tot,ans;
    void init(){
        Mem(head,0);
        tot = 0;
    }
    void add(int u,int v){
        edge[++tot].next = head[u];
        edge[tot].to = v;
        head[u] = tot;
    }
    void dfs(int t){
        vis[t] = 1;
        for(int i = head[t]; i;i = edge[i].next){
            int v = edge[i].to;
            if(vis[v]) continue;
            dfs(v);
        }
    }
    void dfs2(int t){
        vis3[t] = 1;
        vis[t] = 1;
        for(int i = head[t];i;i = edge[i].next){
            int v = edge[i].to;
            if(vis2[v]){
                vis2[v] = 0;
                ans--;
            }
            if(vis3[v]) continue;
            dfs2(v);
        }
    }
    int main()
    {
        scanf("%d%d%d",&N,&M,&s);
        init();
        For(i,1,M){
            int u,v;
            scanf("%d%d",&u,&v);
            add(u,v);
            ind[v]++;
        }
        dfs(s);
        ans = 0;
        For(i,1,N){
            if(!ind[i] && !vis[i]){
                ans++;
                dfs(i);
            }
        }
        For(i,1,N){
            if(!vis[i]){
                Mem(vis3,0);
                ans++;
                dfs2(i);
                vis2[i] = 1;
            }
        }
        Pri(ans);
        #ifdef VSCode
        system("pause");
        #endif
        return 0;
    }
    View Code

    第二个想法是标记覆盖,顺序dfs每一个点,以每一个点为起点经过的点用不同标记覆盖,最后判断所有标记的数量

    #include <map>
    #include <set>
    #include <ctime>
    #include <cmath>
    #include <queue>
    #include <stack>
    #include <vector>
    #include <string>
    #include <cstdio>
    #include <cstdlib>
    #include <cstring>
    #include <sstream>
    #include <iostream>
    #include <algorithm>
    #include <functional>
    using namespace std;
    #define For(i, x, y) for(int i=x;i<=y;i++)  
    #define _For(i, x, y) for(int i=x;i>=y;i--)
    #define Mem(f, x) memset(f,x,sizeof(f))  
    #define Sca(x) scanf("%d", &x)
    #define Scl(x) scanf("%lld",&x);  
    #define Pri(x) printf("%d
    ", x)
    #define Prl(x) printf("%lld
    ",x);  
    #define CLR(u) for(int i=0;i<=N;i++)u[i].clear();
    #define LL long long
    #define ULL unsigned long long  
    #define mp make_pair
    #define PII pair<int,int>
    #define PIL pair<int,long long>
    #define PLL pair<long long,long long>
    #define pb push_back
    #define fi first
    #define se second 
    typedef vector<int> VI;
    const double eps = 1e-9;
    const int maxn = 5010;
    const int INF = 0x3f3f3f3f;
    const int mod = 1e9 + 7; 
    int N,M,tmp,K,s; 
    int vis[maxn];
    bool vis2[maxn];
    bool vis3[maxn];
    int ind[maxn];
    struct Edge{
        int to,next;
    }edge[maxn];
    int head[maxn],tot,ans;
    void init(){
        Mem(head,0);
        tot = 0;
    }
    void add(int u,int v){
        edge[++tot].next = head[u];
        edge[tot].to = v;
        head[u] = tot;
    }
    void dfs(int t){
        vis[t] = tmp;
        for(int i = head[t]; i;i = edge[i].next){
            int v = edge[i].to;
            if(vis[v] == tmp) continue;
            dfs(v);
        }
    }
    int main()
    {
        scanf("%d%d%d",&N,&M,&s);
        init();
        For(i,1,M){
            int u,v;
            scanf("%d%d",&u,&v);
            add(u,v);
        }
        tmp = 1;
        dfs(s);
        For(i,1,N){
            if(!vis[i]){
                tmp++;
                dfs(i);
            }
        }
        ans = 0;
        vis2[1] = 1;
        For(i,1,N){
            if(!vis2[vis[i]]){
                vis2[vis[i]] = 1;
                ans++;
            }
        }
        Pri(ans);
        #ifdef VSCode
        system("pause");
        #endif
        return 0;
    }
    View Code

    当然,以上两个算法都是O(n2)的算法,这题5000的数据范围可以跑,但是当数据范围扩大的时候,就需要考虑更强的算法来解决;

    用Tarjan算法将原图缩点变成一个可拓扑的dag图,直接数入度为0的点即可。

    #include <map>
    #include <set>
    #include <ctime>
    #include <cmath>
    #include <queue>
    #include <stack>
    #include <vector>
    #include <string>
    #include <cstdio>
    #include <cstdlib>
    #include <cstring>
    #include <sstream>
    #include <iostream>
    #include <algorithm>
    #include <functional>
    using namespace std;
    #define For(i, x, y) for(int i=x;i<=y;i++)  
    #define _For(i, x, y) for(int i=x;i>=y;i--)
    #define Mem(f, x) memset(f,x,sizeof(f))  
    #define Sca(x) scanf("%d", &x)
    #define Scl(x) scanf("%lld",&x);  
    #define Pri(x) printf("%d
    ", x)
    #define Prl(x) printf("%lld
    ",x);  
    #define CLR(u) for(int i=0;i<=N;i++)u[i].clear();
    #define LL long long
    #define ULL unsigned long long  
    #define mp make_pair
    #define PII pair<int,int>
    #define PIL pair<int,long long>
    #define PLL pair<long long,long long>
    #define pb push_back
    #define fi first
    #define se second 
    typedef vector<int> VI;
    const double eps = 1e-9;
    const int maxn = 5010;
    const int INF = 0x3f3f3f3f;
    const int mod = 1e9 + 7; 
    int N,M,tmp,K,s; 
    int vis[maxn];
    struct Edge{
        int to,next;
    }edge[maxn];
    int head[maxn],tot,ans;
    int Low[maxn],dfn[maxn],Stack[maxn],belong[maxn];
    int index,top,scc;
    bool Instack[maxn];
    int ind[maxn];
    int num[maxn];
    void Tarjan(int u){
        int v;
        Low[u] = dfn[u] = ++ index;
        Stack[top++] = u;
        Instack[u] = true;
        for(int i = head[u];i;i =edge[i].next){
            int v = edge[i].to;
            if(!dfn[v]){
                Tarjan(v);
                if(Low[u] > Low[v]) Low[u] = Low[v];
            }else if(Instack[v] && Low[u] > dfn[v]){
                Low[u] = dfn[v];
            }
        }
        if(Low[u] == dfn[u]){
            scc++;
            do{
                v = Stack[--top];
                Instack[v] = false;
                belong[v] = scc;
                num[scc]++;
            }while(v != u);
        }
    }
    void init(){
        Mem(head,0);
        tot = 0;
    }
    void add(int u,int v){
        edge[++tot].next = head[u];
        edge[tot].to = v;
        head[u] = tot;
    }
    
    int main()
    {
        scanf("%d%d%d",&N,&M,&s);
        init();
        For(i,1,M){
            int u,v;
            scanf("%d%d",&u,&v);
            add(u,v);
        }
        index = scc = top = 0;
        For(i,1,N) if(!dfn[i]) Tarjan(i);
        int ans = 0;
        For(i,1,N){
            for(int j = head[i];j;j = edge[j].next){
                int v = edge[j].to;
                if(belong[i] != belong[v]){
                    ind[belong[v]] = 1;
                }
            }
        }
        vis[belong[s]] = 1;
        For(i,1,N){
            if(!ind[belong[i]] && !vis[belong[i]]){
                vis[belong[i]] = 1;
                ans++;
            }
        }
        Pri(ans);
        #ifdef VSCode
        system("pause");
        #endif
        return 0;
    }
  • 相关阅读:
    查询安装webpack4.0是否成功时提示无法找到的解决方法
    clientHeight—scrollHeight—offsetHeight三者的区别
    onunload事件不触发的探索
    你知道刷社保卡看病买药也能扫二维码支付吗?(以成都市社保卡为例)
    成都市新社保卡线上申请方法(无需线下办理,手机直接搞定)
    jquery实现移动端页面加载后,向上滚动指定距离无效引起的探索
    社保官网查询密码重置及注册(以成都为例)
    社保对线上购买保险时2个你不知道的影响(最后一个真的太坑爹,中招的人肯定不在少数)
    坑爹的京东E卡
    Mongodb(一)
  • 原文地址:https://www.cnblogs.com/Hugh-Locke/p/9595021.html
Copyright © 2011-2022 走看看