zoukankan      html  css  js  c++  java
  • 07 逻辑回归实践

    1.逻辑回归是怎么防止过拟合的?为什么正则化可以防止过拟合?(大家用自己的话介绍下)

    算法层面:

    ①L1正则,通过增大正则项导致更多参数为0,参数系数化降低模型复杂度,从而抵抗过拟合。

    ②L2正则,通过使得参数都趋于0,变得很小,降低模型的抖动,从而抵抗过拟合。

    数据层面:

    ①增加样本数量

    ②通过特征选择,剔除一些不重要的特征,从而降低模型复杂度

    过拟合表现在训练数据上的误差非常小,而在测试数据上误差反而增大。其原因一般是模型过于复杂,过分得去拟合数据的噪声和outliers.
    正则化则是对模型参数添加先验,使得模型复杂度较小,对于噪声以及outliers的输入扰动相对较小。如果我们的参数值对应一个较小值的话(参数值比较小),那么往往我们会得到一个形式更简单的假设。
    实际上,这些参数的值越小,通常对应于越光滑的函数,也就是更加简单的函数。因此 就不易发生过拟合的问题。

    2.用logiftic回归来进行实践操作,数据不限。

    使用逻辑回归根据泰坦尼克号上乘船人员的船舱等级(分三等)、性别、年龄进行预测该乘客是否生还。

    先导入需要使用的库

    import pandas as pd
    from sklearn.linear_model import LogisticRegression
    from sklearn.model_selection import train_test_split
    from sklearn.metrics import classification_report
    import numpy as np

    读取泰坦尼克号生还人数数据集,对数据集进行初步处理

    data=pd.read_csv("./data/titanic_data.csv")
    data.drop("PassengerId",axis=1,inplace=True)  #删除乘客id列
    data.loc[data['Sex']=='male','Sex']=1   #将非数值型数据数值化—使用数值1代替男性
    data.loc[data['Sex']=='female','Sex']=0 #将非数值型数据数值化—用数值0代替女性
    data.fillna(data["Age"].mean(),inplace=True)  #因年龄列有缺失值 故使用该列平均值填充空值

    选取训练数据和目标数据并划分训练集和测试集(8:2划分)

    x=data.iloc[:,1:]   #从第一列开始,所有列都为训练数据
    y=data.iloc[:,0]    #第0列为目标数据,即是否生还
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2)

    构建逻辑回归模型,训练模型

    model = LogisticRegression()
    model.fit(x_train,y_train)

    使用模型进行数据预测及对模型进行评估

    y_pre=model.predict(x_test)
    train_score = model.score(x_train, y_train)   #训练集的正确率
    test_score = model.score(x_test, y_test)      #测试集的正确率
    print("训练集的准确率:",train_score, "测试集的准确率:",test_score)
    print('模型召回率:
    ', classification_report(y_test,y_pre))
    print('matchs:{0}/{1}'.format(np.equal(y_pre,y_test).shape[0], y_test.shape[0]))  # 预测正确个数

    预测结果:

  • 相关阅读:
    我的有道难题算法-双倍超立方数
    终于获取了SharePoint.OpenDocument对象打开的Word对象
    Eclipse下的项目管理插件介绍
    初识 sqlite 与 content provider 学习笔记
    android 官方文档中的一些错误收集
    android TraceView (图形化性能测试工具)使用入门笔记
    Texttospeech 入门与进阶学习笔记(android)
    Intent进阶 和 Intentfilter 学习笔记
    android UI设计属性中英对照表(未修订)
    android学习笔记7天打造一个简易网络Mp3播放器
  • 原文地址:https://www.cnblogs.com/HvYan/p/12794136.html
Copyright © 2011-2022 走看看