zoukankan      html  css  js  c++  java
  • 链表应用:一元多项式运算器。

    链表应用:一元多项式运算器。

    基本要求:

    (1)输入并建立多项式,并用友好的界面显示多项式,如,8x3-6x2+8显示为8x^3-6x^2+8;

    (2)计算两个多项式的加法和减法;

    (3)给定x,计算多项式在x处的值

    代码如下

    #include<stdio.h>
    #include<math.h>
    #include<string.h>
    #include<stdlib.h>
    
    typedef struct Polynode{
        int coef;
        int exp;
        Polynode *next;
    }Polynode, *Polylist;
    
    void Initlist(Polylist *L);
    Polylist Createlist(Polylist L);
    void Showlist(Polylist L);
    void PolyAdd(Polylist polya, Polylist polyb, Polylist polyc);
    void PolySub(Polylist polya, Polylist polyb, Polylist polyc);
    int evaluationAtX(Polylist L, int x);
    
    void Initlist(Polylist *L){
        *L = (Polylist)malloc(sizeof(Polylist));
        (*L)->next = NULL;
    }
    
    /*创建存储多项式的链表,输入书系数有小变大*/ 
    Polylist Createlist(Polylist L){
        Polynode *pre, *rear;
        pre = rear = L;
        rear = (Polynode *)malloc(sizeof(Polynode));
        scanf("%d %d", &rear->coef, &rear->exp);
        while(rear->coef){
            pre->next = rear;
            pre = rear;
            rear = (Polynode*)malloc(sizeof(Polynode));
            scanf("%d %d", &rear->coef, &rear->exp);
        }
        free(rear);
        pre->next = NULL;
        return L;
    }
    
    //输出多项式,注意格式,还有显示的细节 
    void Showlist(Polylist L){ 
        Polynode *p = L->next;
        if(p->exp == 0){
            printf("%d", p->coef);
        }
        else{
            printf("%dx^%d", p->coef, p->exp);
        }
        
        for(p = p->next; p != NULL; p = p->next){
            if(p->exp == 0 ){
                if(p->coef < 0)
                printf("%d", p->coef);
                else
                printf("+%d", p->coef);
            }
            else{
                if(p->coef < 0){
                    if(p->coef == -1 && p->exp == 1){
                        printf("-x");
                    }
                    else if(p->coef != -1 && p->exp == 1){
                        printf("%dx", p->coef);
                    }
                    else if(p->coef == -1 && p->exp != 1){
                        printf("-x^%d", p->exp);
                    }
                    else{
                        printf("%dx^%d", p->coef, p->exp);
                    }
                }
                else{
                    if(p->coef == 1 && p->exp == 1){
                        printf("+x");
                    }
                    else if(p->coef != 1 && p->exp == 1){
                        printf("+%dx", p->coef);
                    }
                    else if(p->coef == 1 && p->exp != 1){
                        printf("+x^%d", p->exp);
                    }
                    else{
                        printf("+%dx^%d", p->coef, p->exp);
                    }
                }
            }
        }
        printf("
    ");
    }
    
    /*polyc链表用来保存加和得到的结果,不能利用现有链表节点,也不能销毁链表节点 ,不然操作只是一次性的
    以下函数实现polyc = polya + polyb*/ 
    void PolyAdd(Polylist polya, Polylist polyb, Polylist polyc){
        Polynode *p, *q, *pre, *rear;
        int sum;
        p = polya->next;
        q = polyb->next;
        pre = rear = polyc;
        while(p != NULL && q != NULL){//系数之间大小只有三种情况,分类处理 
            if(p->exp < q->exp){
                rear = (Polynode*)malloc(sizeof(Polynode));
                rear->coef = p->coef;
                rear->exp = p->exp;
                pre->next = rear;
                pre = rear;
                p = p->next;
            }
            else if(p->exp == q->exp){//只有系数相等时才进行运算 
                sum = p->coef + q->coef;
                if(sum != 0){
                    rear = (Polynode*)malloc(sizeof(Polynode));
                    rear->coef = sum;
                    rear->exp = p->exp;
                    pre->next = rear;
                    pre = rear;
                    p = p->next;
                    q = q->next;
                }
                else{
                    p = p->next;
                    q = q->next;
                }
            }
            else{
                rear = (Polynode*)malloc(sizeof(Polynode));
                rear->coef = q->coef;
                rear->exp = q->exp;
                pre->next = rear;
                pre = rear;
                q = q->next;
            }
        }
        //把没有处理完的多项式进行处理 
        if(p != NULL){
            while(p != NULL){
                rear = (Polynode*)malloc(sizeof(Polynode));
                rear->coef = p->coef;
                rear->exp = p->exp;
                pre->next = rear;
                pre = rear;
                p = p->next; 
            }
        }
        if(q != NULL){
            while(q != NULL){
                rear = (Polynode*)malloc(sizeof(Polynode));
                rear->coef = q->coef;
                rear->exp = q->exp;
                pre->next = rear;
                pre = rear;
                q = q->next;
            }
        }
        rear->next = NULL;
    }
    
    /*其实也可以在加法的代码上稍加改动便可以实现减法,但是感觉这样会使代码比较长,所以我选择用: 
    多项式减法其实就是多项式加法,实现polya - polyb*/
    void PolySub(Polylist polya, Polylist polyb, Polylist polyc){
        Polylist t;
        Initlist(&t);
        Polynode *pre, *rear;
        pre = rear = t; 
        //找一个中间链表t,来存储 -polyb
        for(Polynode *p = polyb->next; p != NULL; p = p->next){ 
            rear = (Polynode*)malloc(sizeof(Polynode));
            rear->coef = -1 * p->coef;
            rear->exp = p->exp;
            pre->next = rear;
            pre = rear;
        }
        pre->next = NULL;
        PolyAdd(polya, t, polyc);
        pre = t;
        while(pre != NULL){//释放掉 t
            rear = pre->next;
            free(pre);
            pre = rear;
        }
    }
    
    //计算多项式在x = x时的值 
    int evaluationAtX(Polylist L, int x){
        int sum = 0;
        for(Polynode *p = L->next; p != NULL; p = p->next){
            sum += p->coef * pow(x, p->exp);
        }
        return sum;
    }
    
    int main(){
        Polylist La, Lb, Lc, Ld;
        Initlist(&La);
        Initlist(&Lb);
        Initlist(&Lc);
        Initlist(&Ld);
        La = Createlist(La);
        printf("La = ");
        Showlist(La);
        Lb = Createlist(Lb);
        printf("Lb = ");
        Showlist(Lb);
        PolyAdd(La, Lb, Lc);
        printf("Lc = ");
        Showlist(Lc);
        PolySub(La, Lb, Ld);
        printf("Ld = ");
        Showlist(Ld);
        int x = 2;
        printf("lc(%d) = %d
    ", x, evaluationAtX(Lc, x));
        return 0;
    }
    View Code

    运行结果如下:

    种一棵树最好的时间是十年前,其次是现在。
  • 相关阅读:
    反射(五)之动态代理的作用
    反射(四)之反射在开发中的适用场景及利弊
    反射(三)之通过反射获取构造方法, 成员变量, 成员方法
    反射(二)之反射机制
    反射(一)之初探反射
    java多线程(五)之总结(转)
    java多线程(四)之同步机制
    java多线程(三)之售票案例
    java多线程(二)之实现Runnable接口
    java多线程(一)之继承Thread类
  • 原文地址:https://www.cnblogs.com/HyattXia/p/9749167.html
Copyright © 2011-2022 走看看