zoukankan      html  css  js  c++  java
  • HDU 1492 The number of divisors(约数) about Humble Numbers 数论

    The number of divisors(约数) about Humble Numbers
    Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u
     

    Description

    A number whose only prime factors are 2,3,5 or 7 is called a humble number. The sequence 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 25, 27, ... shows the first 20 humble numbers. 

    Now given a humble number, please write a program to calculate the number of divisors about this humble number.For examle, 4 is a humble,and it have 3 divisors(1,2,4);12 have 6 divisors. 

    Input

    The input consists of multiple test cases. Each test case consists of one humble number n,and n is in the range of 64-bits signed integer. Input is terminated by a value of zero for n. 

    Output

    For each test case, output its divisor number, one line per case. 

    Sample Input

    4
    12
    0

    Sample Output

    3
    6


    #include <iostream>
    #include <cstring>
    #include <cstdio>
    #include <algorithm>
    #include <queue>
    #include <vector>
    #include <iomanip>
    #include <math.h>
    using namespace std;
    #define FIN     freopen("input.txt","r",stdin);
    #define INF     0x3f3f3f3f
    #define lson    l,m,rt<<1
    #define rson    m+1,r,rt<<1|1
    typedef long long LL;
    
    int main()
    {
        //FIN
    
        LL n;
        while(~scanf("%lld",&n)&&n)
        {
            LL res=1;
            int a=1,b=1,c=1,d=1;
            while(n!=1&&n%2==0)  {a++;n/=2;}
            while(n!=1&&n%3==0)  {b++;n/=3;}
            while(n!=1&&n%5==0)  {c++;n/=5;}
            while(n!=1&&n%7==0)  {d++;n/=7;}
            res=a*b*c*d;
            printf("%lld
    ",res);
        }
    
    }
    

      




  • 相关阅读:
    [转载]混合高斯模型
    威流IIS日志分析器1.2版本发布
    获取datagridview列中button点击事件
    C#引用winwebmail的dll
    威流网站监控系统新增飞信提醒
    关于Server.MapPath()
    把"\"转换成"/"
    asp.net站点常见问题绵集
    动态显示系统时间
    得到一个文件夹下的文件,并将文件删除
  • 原文地址:https://www.cnblogs.com/Hyouka/p/5721479.html
Copyright © 2011-2022 走看看