The number of divisors(约数) about Humble Numbers
Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u
Description
A number whose only prime factors are 2,3,5 or 7 is called a humble number. The sequence 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 25, 27, ... shows the first 20 humble numbers.
Now given a humble number, please write a program to calculate the number of divisors about this humble number.For examle, 4 is a humble,and it have 3 divisors(1,2,4);12 have 6 divisors.
Now given a humble number, please write a program to calculate the number of divisors about this humble number.For examle, 4 is a humble,and it have 3 divisors(1,2,4);12 have 6 divisors.
Input
The input consists of multiple test cases. Each test case consists of one humble number n,and n is in the range of 64-bits signed integer. Input is terminated by a value of zero for n.
Output
For each test case, output its divisor number, one line per case.
Sample Input
4 12 0
Sample Output
3 6
#include <iostream> #include <cstring> #include <cstdio> #include <algorithm> #include <queue> #include <vector> #include <iomanip> #include <math.h> using namespace std; #define FIN freopen("input.txt","r",stdin); #define INF 0x3f3f3f3f #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 typedef long long LL; int main() { //FIN LL n; while(~scanf("%lld",&n)&&n) { LL res=1; int a=1,b=1,c=1,d=1; while(n!=1&&n%2==0) {a++;n/=2;} while(n!=1&&n%3==0) {b++;n/=3;} while(n!=1&&n%5==0) {c++;n/=5;} while(n!=1&&n%7==0) {d++;n/=7;} res=a*b*c*d; printf("%lld ",res); } }