zoukankan      html  css  js  c++  java
  • 最短路径算法-dijkstra

     首先dijkstra是一个人,一位计算机上古时期的先驱;而dijkstra是他用来向观众解释什么计算机想到的一个算法,如何计算两个地点的最短距离;当然这个最短距离,是有一个前提的,首先你要有一个已知各个点之间距离的路网;

    比如这个图,我们如何去寻找A点到E点的最短距离?显然,正常人的直觉就是“这不是很简单,我都算下试试,比较一下不就知道了!”。但是这里只有四个顶点,倘若,除了这四个顶点外,额外还有有100个顶点的路网,又如何找到两个点的最短距离呢?这个时候,也许就要好好想想 “首先我要一个笔记本,一个笔,看下哪些点能到我的目的地E点,我可以给这些点起个名字,就叫‘nearByEPoints’,然后,我只需要知道,这些‘nearByEPoints’点到起点A的最短路径,然后加上末端的一段路径距离,比较一下就能知道那个路径是最短路径了;然后问题就变成了,如何找到A点到nearByEPoints”点的最短路径了,可以想见,只要我们不怕麻烦肯定能找到A到E的最短路径的;”
     从刚刚的思路中,我们可以知道,我们可以使用递归算法来实现这个算法。
    dijkstra算法可视化



    
    /**
     * @program: SpringBoot_Dubbo_Example
     * @description: 计算主体
     * @author: wangJun
     * @create: 2019-10-22 16:07
     **/
    public class DPQ {
        private LinkedList<Line> linesNeedToCalculate;
    
    
        public DPQ(LinkedList<Line> linesNeedToCalculate) {
            this.linesNeedToCalculate = linesNeedToCalculate;
        }
    
    
        /**
         * 这里递归计算的缺点之一是,可能存在重复计算,这里使用了shortestMap来缓存以及计算过的节点
         * @param startPoint
         * @param destPoint
         * @param lines
         * @param shortestMap
         * @return
         */
        long getShortestDistance(long startPoint, long destPoint, LinkedList<Line> lines, HashMap<Long, Long> shortestMap){
            if (destPoint == startPoint){
                return 0;
            }
            if (shortestMap.get(destPoint) != null){
                return shortestMap.get(destPoint);
            }
            Iterator<Line> iterator = lines.iterator();
            long shortestDistance = -1;
            while (iterator.hasNext()){
                Line currentLine = iterator.next();
                if (currentLine.getToPoint() == destPoint){
                    iterator.remove();
                    LinkedList<Line> remainLines = new LinkedList<>();
                    remainLines.addAll(lines);
                    long beforeShortestDistance = getShortestDistance(startPoint, currentLine.getFromPoint(), remainLines, shortestMap);
                    Long currentDistance = beforeShortestDistance + currentLine.getDistance();
    
    
                    if (currentDistance < shortestDistance || shortestDistance == -1){
                        shortestDistance = currentDistance;
                    }
                }
            }
            System.out.println(startPoint + "到" + destPoint + " 最短距离是" + shortestDistance);
            shortestMap.put(destPoint, shortestDistance);
            return shortestDistance;
        }
    
    }
    
    
    


         我们可以知道任何递归都可以改造成循环方式,我用C++又实现了一版普通循环方式的dijkstra

    Dijkstra.h
    
    #ifndef DATASTRUCTURE_DIJKSTRA_H
    #define DATASTRUCTURE_DIJKSTRA_H
    
    #include <vector>
    #include <list>
    #include <utility>
    
    using namespace std;
    class Dijkstra {
    public:
    
        /**
         * 顶点个数
         */
        int v;
    
        
        /**
         * 一个二维数组,index1,index2是两个顶点,value是之间直接的距离,如果不相连接,就是INX_MAX
         */
        vector<int> *adj;
    
    
        Dijkstra(int vertexCount);
    
    
    
        /**
         * search入口
         * @param s
         * @param t
         * @return
         */
        list<int> search(int s, int t);
    
        /**
         * 获取下一次计算的起始点(最短的未settle的点)
         * @param settled 
         * @param shortest 
         * @return 
         */
        int getNextStart(bool settled[], int shortest[]);
    };
    
    
    #endif //DATASTRUCTURE_DIJKSTRA_H
    
    
    Dijkstra.cpp
    
    
    #include "Dijkstra.h"
    #include <vector>
    #include <list>
    #include <cmath>
    
    Dijkstra::Dijkstra(int vertexCount) {
        this->v = vertexCount;
        this->adj = new vector<int>[v];
    }
    
    list<int> Dijkstra::search(int s, int t) {
        list<int> result;
        if (s == t){
            result.push_front(s);
            return result;
        }
    
    
        bool settled[v];
        int pre[v];
        int shortest[v];
    
        //初始化字段
        for (int i = 0; i < v; ++i) {
            settled[i] = false;
            pre[i] = -1;
            shortest[i] = INT_MAX;
        }
    
        settled[s] = false;
        shortest[s] = 0;
        while(true){
    
            int thisStart = getNextStart(settled, shortest);
    
            if(thisStart == -1){
                //可连通的线路已经全部遍历完毕
                break;
            } else {
                settled[thisStart] = true;
            }
    
            vector<int> sides = adj[thisStart];
            for (int point = 0; point < v; ++point) {
                if (settled[point]){
                    continue;
                }
                int length = sides.at(point);
                //s 和 point 相互连接,且不是自己连自己
                if (length != INT_MAX && thisStart != point){
                    int newLength = shortest[thisStart] + length;
                    if(shortest[point] > newLength){
                        shortest[point] = newLength;
                        pre[point] = thisStart;
                    }
                }
            }
    
        }
    
    
    
    
        //如果s到t是可达的
        if (settled[t]){
            result.push_front(t);
            while(true){
                if(pre[t] != -1){
                    result.push_front(pre[t]);
                    t = pre[t];
                } else {
                    break;
                }
            }
        }
    
    
        return result;
    }
    
    
    int Dijkstra::getNextStart(bool *settled, int *shortest) {
        int unsettledAndShortestIndex = -1;
        int unsettledAndShortestDistance = INT_MAX;
        for (int i = 0; i < v; ++i) {
            bool isSettle = settled[i];
            int distance = shortest[i];
            if (!isSettle && distance < unsettledAndShortestDistance){
                unsettledAndShortestIndex = i;
                unsettledAndShortestDistance = distance;
            }
        }
        return unsettledAndShortestIndex;
    }
    
    
    
    测试代码:DijkstraTest.cpp
    
    #include "gtest/gtest.h"
    #include "graph/Dijkstra.h"
    #include <iostream>
    #include <cmath>
    #include <list>
    
    
    using namespace std;
    
    class DijkstraTestFixture: public ::testing::Test {
    public:
        Dijkstra *dijkstra;
        virtual void SetUp(){
            int vertexCount = 5;
            dijkstra = new Dijkstra(vertexCount);
            dijkstra->adj = new vector<int>[vertexCount];
            dijkstra->adj[0] = {0,7, 5, INT_MAX, INT_MAX};
            dijkstra->adj[1] = {7,0, 4, 6, INT_MAX};
            dijkstra->adj[2] = {5,4, 0, INT_MAX, 1};
            dijkstra->adj[3] = {INT_MAX,6, INT_MAX, 0, INT_MAX};
            dijkstra->adj[4] = {INT_MAX,INT_MAX, 1, INT_MAX, 0};
    
        }
    
        virtual void TearDown(){
            delete dijkstra;
    
        }
    };
    
    
    TEST_F(DijkstraTestFixture, testBasic) {
        list<int> result = dijkstra->search(0, 4);
        list<int>::iterator it;
        for(it = result.begin(); it != result.end(); it++){
            cout << *it << endl;
        }
    }
    
    
  • 相关阅读:
    Java帮助文档的生成
    Java内部类
    Java中利用标签跳出外层循环break
    【转】你真的了解word-wrap和word-break的区别吗?
    Office/Access 2013 扩展支持xbase/DBF 文件
    调用cmd.exe执行pdf的合并(pdftk.exe)
    input 数字输入控制(含小数)
    iis7.5 发布mvc出错的解决办法
    table中超过长度的列,显示省略号
    本地图片的预览和上传
  • 原文地址:https://www.cnblogs.com/IC1101/p/11750317.html
Copyright © 2011-2022 走看看