zoukankan      html  css  js  c++  java
  • 三角函数

    特别为了某人写的23333,可能会有点问题23333

    ( heta) 30° 45° 60° 90° 120° 135° 150° 180°
    弧度 0 (frac{pi}{6}) (frac{pi}{4}) (frac{pi}{3}) (frac{pi}{2}) (frac{2pi}{3}) (frac{3pi}{4}) (frac{5pi}{6}) (pi)
    (sin{ heta}) 0 (frac{1}{2}) (frac{sqrt{2}}{2}) (frac{sqrt{3}}{2}) 1 (frac{sqrt{3}}{2}) (frac{sqrt{2}}{2}) (frac{1}{2}) 0
    (cos{ heta}) 1 (frac{sqrt{3}}{2}) (frac{sqrt{2}}{2}) (frac{1}{2}) 0 -(frac{1}{2}) -(frac{sqrt{2}}{2}) -(frac{sqrt{3}}{2}) -1
    ( an{ heta}) 0 (frac{sqrt{3}}{3}) 1 (sqrt{3}) -(sqrt{3}) -1 -(frac{sqrt{3}}{3}) 0
    ( heta) 210° 225° 240° 270° 300° 315° 330° 360°
    弧度 (frac{7pi}{6}) (frac{5pi}{4}) (frac{4pi}{3}) (frac{3pi}{2}) (frac{5pi}{3}) (frac{7pi}{4}) (frac{11pi}{6}) 0 0
    (sin{ heta}) -(frac{1}{2}) -(frac{sqrt{2}}{2}) -(frac{sqrt{3}}{2}) -1 -(frac{sqrt{3}}{2}) -(frac{sqrt{2}}{2}) -(frac{1}{2}) 0 0
    (cos{ heta}) -(frac{sqrt{3}}{2}) -(frac{sqrt{2}}{2}) -(frac{1}{2}) 0 (frac{1}{2}) (frac{sqrt{2}}{2}) (frac{sqrt{3}}{2}) 1 1
    ( an{ heta}) (frac{sqrt{3}}{3}) 1 (sqrt{3}) -(sqrt{3}) -1 -(frac{sqrt{3}}{3}) 0 0

    基本公式:

    (sin^2{alpha}+cos^2{alpha}=1)

    (frac{sin{alpha}}{cos{alpha}}= an{alpha})

    诱导公式:

    (sin{(alpha+k imes2pi)}=sin{alpha} quad cos{(alpha+k imes2pi)}=cos{alpha} quad an{(alpha+k imes2pi)}= an{alpha} quad (k in Z))

    (sin{(alpha+pi)}=-sin{alpha} quad cos{(alpha+pi)}=-cos{alpha} quad an{(alpha+pi)}= an{alpha})

    (sin{(-alpha)}=-sin{alpha} quad cos{(-alpha)}=cos{alpha} quad an{(-alpha)}=- an{alpha})

    (sin{(pi-alpha)}=sin{alpha} quad cos{(pi-alpha)}=-cos{alpha} quad an{(pi-alpha)}=- an{alpha})

    $sin{(frac{pi}{2}-alpha)}=cos{alpha} quad cos{(frac{pi}{2}-alpha)}=sin{alpha} $

    $sin{(frac{pi}{2}+alpha)}=cos{alpha} quad cos{(frac{pi}{2}+alpha)}=-sin{alpha} $

    口诀:奇变偶不变,符号看象限

    加减法:

    (sin{(alpha+eta)}=sin{alpha} imescos{eta}+sin{eta} imescos{alpha}quadsin{(alpha-eta)}=sin{alpha} imescos{eta}-sin{eta} imescos{alpha})

    (cos{(alpha+eta)}=cos{alpha} imescos{eta}-sin{eta} imessin{alpha}quadcos{(alpha-eta)}=cos{alpha} imescos{eta}+sin{eta} imessin{alpha})

    ( an{(alpha+eta)}=frac{ an{alpha}+ an{eta}}{1- an{alpha} imes an{eta}}quad an{(alpha-eta)}=frac{ an{alpha}- an{eta}}{1+ an{alpha} imes an{eta}})

    二倍角公式:

    (sin{(2 imesalpha)}=2 imessin{alpha} imescos{alpha})

    (cos{(2 imesalpha)}=cos^2{alpha}-sin^2{alpha}=2 imescos^2{alpha}-1=1-2 imessin^2{alpha})

    ( an{(2 imesalpha)}=frac{2 imes an{alpha}}{1- an^2{alpha}})

    ( an{frac{alpha}{2}}=frac{sin{alpha}}{1+cos{alpha}}=frac{1-cos{alpha}}{sin{alpha}})

    (sin^2{alpha}=frac{1-cos{(2 imesalpha)}}{2}quadcos^2{alpha}=frac{sin{(2 imesalpha)}-1}{2})

    ((sin{alpha}+cos{alpha})^2=1+sin{2 imesalpha})

    和差化积:

    (sin{alpha}-sin{eta}=2 imescos{frac{alpha+eta}{2}} imessin{frac{alpha-eta}{2}}quadsin{alpha}+sin{eta}=2 imescos{frac{alpha-eta}{2}} imessin{frac{alpha+eta}{2}})
    (cos{alpha}-cos{eta}=2 imescos{frac{alpha+eta}{2}} imescos{frac{alpha-eta}{2}}quadcos{alpha}+cos{eta}=2 imessin{frac{alpha-eta}{2}} imessin{frac{alpha+eta}{2}})

    积化和差:

    (sin{alpha} imescos{eta}=frac{sin{(alpha+eta)}+sin{(alpha-eta)}}{2}quadsin{alpha} imessin{eta}=frac{cos{(alpha+eta)}-cos{(alpha-eta)}}{2})

    (cos{alpha} imessin{eta}=frac{sin{(alpha+eta)}-sin{(alpha-eta)}}{2}quadcos{alpha} imescos{eta}=frac{cos{(alpha+eta)}+cos{(alpha-eta)}}{2})

    在任意三角形ABC中,定义角A对边为a,角B对边为b,角C对边为c,则有:
    1.(sin{(A+B)}=sin{C}quadcos{(A+B)}=-cos{C})

    2.正弦定理:

    (frac{a}{sin{A}}=frac{b}{sin{B}}=frac{c}{sin{C}}=2R),其中R为该三角形外接圆的半径

    3.余弦定理:

    (c^2=a^2+b^2-2 imes a imes b imes cos{C} quad a^2=b^2+c^2-2 imes b imes c imes cos{A} quad b^2=a^2+c^2-2 imes a imes c imes cos{B})

    对于三角函数: (f(x)=Asin{(omega x+varphi)})

    (A): 振幅

    $ omega $: 三角函数在y轴方向的压缩程度,当 $ omega > 1$ 时,表示被压缩, (omega < 1) 时表示拉伸.

    (omega x+varphi) : 三角函数的相位

    (varphi) : 三角函数的初相

    求周期(T): (T= frac{2 pi}{omega})

    求频率(f): (f=frac{1}{T})

  • 相关阅读:
    CSS Sprite笔记
    前端分页页码静态部分制作
    有趣的网页小部件笔记
    Lintcode 85. 在二叉查找树中插入节点
    Lintcode 166. 主元素
    网页失去焦点标题变化效果
    Lintcode 166. 链表倒数第n个节点
    Lintcode 157. 判断字符串是否没有重复字符
    Lintcode 175. 翻转二叉树
    Lintcode 372. O(1)时间复杂度删除链表节点
  • 原文地址:https://www.cnblogs.com/IQZ-HUCSr-TOE/p/12625527.html
Copyright © 2011-2022 走看看