zoukankan      html  css  js  c++  java
  • 三角函数

    特别为了某人写的23333,可能会有点问题23333

    ( heta) 30° 45° 60° 90° 120° 135° 150° 180°
    弧度 0 (frac{pi}{6}) (frac{pi}{4}) (frac{pi}{3}) (frac{pi}{2}) (frac{2pi}{3}) (frac{3pi}{4}) (frac{5pi}{6}) (pi)
    (sin{ heta}) 0 (frac{1}{2}) (frac{sqrt{2}}{2}) (frac{sqrt{3}}{2}) 1 (frac{sqrt{3}}{2}) (frac{sqrt{2}}{2}) (frac{1}{2}) 0
    (cos{ heta}) 1 (frac{sqrt{3}}{2}) (frac{sqrt{2}}{2}) (frac{1}{2}) 0 -(frac{1}{2}) -(frac{sqrt{2}}{2}) -(frac{sqrt{3}}{2}) -1
    ( an{ heta}) 0 (frac{sqrt{3}}{3}) 1 (sqrt{3}) -(sqrt{3}) -1 -(frac{sqrt{3}}{3}) 0
    ( heta) 210° 225° 240° 270° 300° 315° 330° 360°
    弧度 (frac{7pi}{6}) (frac{5pi}{4}) (frac{4pi}{3}) (frac{3pi}{2}) (frac{5pi}{3}) (frac{7pi}{4}) (frac{11pi}{6}) 0 0
    (sin{ heta}) -(frac{1}{2}) -(frac{sqrt{2}}{2}) -(frac{sqrt{3}}{2}) -1 -(frac{sqrt{3}}{2}) -(frac{sqrt{2}}{2}) -(frac{1}{2}) 0 0
    (cos{ heta}) -(frac{sqrt{3}}{2}) -(frac{sqrt{2}}{2}) -(frac{1}{2}) 0 (frac{1}{2}) (frac{sqrt{2}}{2}) (frac{sqrt{3}}{2}) 1 1
    ( an{ heta}) (frac{sqrt{3}}{3}) 1 (sqrt{3}) -(sqrt{3}) -1 -(frac{sqrt{3}}{3}) 0 0

    基本公式:

    (sin^2{alpha}+cos^2{alpha}=1)

    (frac{sin{alpha}}{cos{alpha}}= an{alpha})

    诱导公式:

    (sin{(alpha+k imes2pi)}=sin{alpha} quad cos{(alpha+k imes2pi)}=cos{alpha} quad an{(alpha+k imes2pi)}= an{alpha} quad (k in Z))

    (sin{(alpha+pi)}=-sin{alpha} quad cos{(alpha+pi)}=-cos{alpha} quad an{(alpha+pi)}= an{alpha})

    (sin{(-alpha)}=-sin{alpha} quad cos{(-alpha)}=cos{alpha} quad an{(-alpha)}=- an{alpha})

    (sin{(pi-alpha)}=sin{alpha} quad cos{(pi-alpha)}=-cos{alpha} quad an{(pi-alpha)}=- an{alpha})

    $sin{(frac{pi}{2}-alpha)}=cos{alpha} quad cos{(frac{pi}{2}-alpha)}=sin{alpha} $

    $sin{(frac{pi}{2}+alpha)}=cos{alpha} quad cos{(frac{pi}{2}+alpha)}=-sin{alpha} $

    口诀:奇变偶不变,符号看象限

    加减法:

    (sin{(alpha+eta)}=sin{alpha} imescos{eta}+sin{eta} imescos{alpha}quadsin{(alpha-eta)}=sin{alpha} imescos{eta}-sin{eta} imescos{alpha})

    (cos{(alpha+eta)}=cos{alpha} imescos{eta}-sin{eta} imessin{alpha}quadcos{(alpha-eta)}=cos{alpha} imescos{eta}+sin{eta} imessin{alpha})

    ( an{(alpha+eta)}=frac{ an{alpha}+ an{eta}}{1- an{alpha} imes an{eta}}quad an{(alpha-eta)}=frac{ an{alpha}- an{eta}}{1+ an{alpha} imes an{eta}})

    二倍角公式:

    (sin{(2 imesalpha)}=2 imessin{alpha} imescos{alpha})

    (cos{(2 imesalpha)}=cos^2{alpha}-sin^2{alpha}=2 imescos^2{alpha}-1=1-2 imessin^2{alpha})

    ( an{(2 imesalpha)}=frac{2 imes an{alpha}}{1- an^2{alpha}})

    ( an{frac{alpha}{2}}=frac{sin{alpha}}{1+cos{alpha}}=frac{1-cos{alpha}}{sin{alpha}})

    (sin^2{alpha}=frac{1-cos{(2 imesalpha)}}{2}quadcos^2{alpha}=frac{sin{(2 imesalpha)}-1}{2})

    ((sin{alpha}+cos{alpha})^2=1+sin{2 imesalpha})

    和差化积:

    (sin{alpha}-sin{eta}=2 imescos{frac{alpha+eta}{2}} imessin{frac{alpha-eta}{2}}quadsin{alpha}+sin{eta}=2 imescos{frac{alpha-eta}{2}} imessin{frac{alpha+eta}{2}})
    (cos{alpha}-cos{eta}=2 imescos{frac{alpha+eta}{2}} imescos{frac{alpha-eta}{2}}quadcos{alpha}+cos{eta}=2 imessin{frac{alpha-eta}{2}} imessin{frac{alpha+eta}{2}})

    积化和差:

    (sin{alpha} imescos{eta}=frac{sin{(alpha+eta)}+sin{(alpha-eta)}}{2}quadsin{alpha} imessin{eta}=frac{cos{(alpha+eta)}-cos{(alpha-eta)}}{2})

    (cos{alpha} imessin{eta}=frac{sin{(alpha+eta)}-sin{(alpha-eta)}}{2}quadcos{alpha} imescos{eta}=frac{cos{(alpha+eta)}+cos{(alpha-eta)}}{2})

    在任意三角形ABC中,定义角A对边为a,角B对边为b,角C对边为c,则有:
    1.(sin{(A+B)}=sin{C}quadcos{(A+B)}=-cos{C})

    2.正弦定理:

    (frac{a}{sin{A}}=frac{b}{sin{B}}=frac{c}{sin{C}}=2R),其中R为该三角形外接圆的半径

    3.余弦定理:

    (c^2=a^2+b^2-2 imes a imes b imes cos{C} quad a^2=b^2+c^2-2 imes b imes c imes cos{A} quad b^2=a^2+c^2-2 imes a imes c imes cos{B})

    对于三角函数: (f(x)=Asin{(omega x+varphi)})

    (A): 振幅

    $ omega $: 三角函数在y轴方向的压缩程度,当 $ omega > 1$ 时,表示被压缩, (omega < 1) 时表示拉伸.

    (omega x+varphi) : 三角函数的相位

    (varphi) : 三角函数的初相

    求周期(T): (T= frac{2 pi}{omega})

    求频率(f): (f=frac{1}{T})

  • 相关阅读:
    Junit单元测试
    win7的6个网络命令
    WOJ1024 (POJ1985+POJ2631) Exploration 树/BFS
    WOJ1022 Competition of Programming 贪心 WOJ1023 Division dp
    woj1019 Curriculum Schedule 输入输出 woj1020 Adjacent Difference 排序
    woj1018(HDU4384)KING KONG 循环群
    woj1016 cherry blossom woj1017 Billiard ball 几何
    woj1013 Barcelet 字符串 woj1014 Doraemon's Flashlight 几何
    woj1012 Thingk and Count DP好题
    woj1010 alternate sum 数学 woj1011 Finding Teamates 数学
  • 原文地址:https://www.cnblogs.com/IQZ-HUCSr-TOE/p/12625527.html
Copyright © 2011-2022 走看看