zoukankan      html  css  js  c++  java
  • uva 12304

    题意:要求解答6个关于圆的问题。
    1.给出三角形坐标求外接圆
    2.给出三角形坐标求内切圆
    3.给出一个圆心和半径已知的圆,求过点(x,y)的所有和这个圆相切的直线
    4.求所有和已知直线相切的过定点(x,y)的已知半径的圆的圆心
    5.给出两个不平行的直线,求所有半径为r的同时和这两个直线相切的圆
    6.给定两个相离的圆,求出所有和这两个圆外切的半径为r的圆。

    比较恶心的计算几何模板题,直接模板吧。。。。

      1 #include<cstdio>
      2 #include<cmath>
      3 #include<cstring>
      4 #include<algorithm>
      5 #include<iostream>
      6 #include<memory.h>
      7 #include<cstdlib>
      8 #include<vector>
      9 #define clc(a,b) memset(a,b,sizeof(a))
     10 #define LL long long int
     11 #define up(i,x,y) for(i=x;i<=y;i++)
     12 #define w(a) while(a)
     13 using namespace std;
     14 const int inf=0x3f3f3f3f;
     15 const int N = 110;
     16 const int maxn = 50;
     17 const double eps = 1e-10;        //调到1e-6以上第4问就可以用delta判断切线,但《训练指南》建议,尽量不要调eps
     18 const double pi = acos(-1);
     19 
     20 char type[maxn];
     21 
     22 int dcmp(double x)
     23 {
     24     return fabs(x) < eps ? 0 : (x > 0 ? 1 : -1);
     25 }
     26 
     27 struct Point
     28 {
     29     double x;
     30     double y;
     31 
     32     Point(double x = 0, double y = 0):x(x), y(y) {}
     33 
     34     bool operator < (const Point& e) const
     35     {
     36         return dcmp(x - e.x) < 0 || (dcmp(x - e.x) == 0 && dcmp(y - e.y) < 0);
     37     }
     38 
     39     bool operator == (const Point& e) const
     40     {
     41         return dcmp(x - e.x) == 0 && dcmp(y - e.y) == 0;
     42     }
     43 
     44     int read()
     45     {
     46         return scanf("%lf%lf", &x, &y);
     47     }
     48 } p[3];
     49 
     50 typedef Point Vector;
     51 
     52 Vector operator + (Point A, Point B)
     53 {
     54     return Vector(A.x + B.x, A.y + B.y);
     55 }
     56 
     57 Vector operator - (Point A, Point B)
     58 {
     59     return Vector(A.x - B.x, A.y - B.y);
     60 }
     61 
     62 Vector operator * (Point A, double p)
     63 {
     64     return Vector(A.x * p, A.y * p);
     65 }
     66 
     67 Vector operator / (Point A, double p)
     68 {
     69     return Vector(A.x / p, A.y / p);
     70 }
     71 
     72 struct Line
     73 {
     74     Point p;
     75     Point v;
     76 
     77     Line() {}
     78     Line(Point p, Point v):p(p), v(v) {}
     79 
     80     int read()
     81     {
     82         return scanf("%lf%lf%lf%lf", &p.x, &p.y, &v.x, &v.y);
     83     }
     84 
     85     Point point(double t)
     86     {
     87         return p + v * t;
     88     }
     89 };
     90 
     91 struct Circle
     92 {
     93     Point c;
     94     double r;
     95 
     96     Circle() {}
     97     Circle(Point c, double r):c(c), r(r) {}
     98 
     99     int read()
    100     {
    101         return scanf("%lf%lf%lf", &c.x, &c.y, &r);
    102     }
    103 
    104     Point point(double a)
    105     {
    106         return Point(c.x + r * cos(a), c.y + r * sin(a));
    107     }
    108 };
    109 
    110 double Dot(Vector A, Vector B)
    111 {
    112     return A.x * B.x + A.y * B.y;
    113 }
    114 
    115 double Cross(Vector A, Vector B)
    116 {
    117     return A.x * B.y - B.x * A.y;
    118 }
    119 
    120 double Length(Vector A)
    121 {
    122     return sqrt(Dot(A, A));
    123 }
    124 
    125 Vector Rotate(Vector A, double rad)
    126 {
    127     return Vector(A.x * cos(rad) - A.y * sin(rad), A.x * sin(rad) + A.y * cos(rad));
    128 }
    129 
    130 Vector Normal(Vector A)
    131 {
    132     double L = Length(A);
    133     return Vector(-A.y / L, A.x / L);
    134 }
    135 
    136 double DistanceToLine(Point P, Point A, Point B)        //点到直线的距离
    137 {
    138     Vector v1 = B - A;
    139     Vector v2 = P - A;
    140     return fabs(Cross(v1, v2) / Length(v1));
    141 }
    142 
    143 double angle(Vector v)      //求向量的极角
    144 {
    145     return atan2(v.y, v.x);
    146 }
    147 
    148 Point GetLineIntersection(Line l1, Line l2)         //求两直线的交点(前提:相交)
    149 {
    150     Vector u = l1.p - l2.p;
    151     double t = Cross(l2.v, u) / Cross(l1.v, l2.v);
    152     return l1.point(t);
    153 }
    154 
    155 int getLineCircleIntersection(Line l, Circle C, double& t1, double& t2, vector<Point>& sol)         //求直线与圆的交点
    156 {
    157     double a = l.v.x;
    158     double b = l.p.x - C.c.x;
    159     double c = l.v.y;
    160     double d = l.p.y - C.c.y;
    161     double e = a * a + c * c;
    162     double f = 2 * (a * b + c * d);
    163     double g = b * b + d * d - C.r * C.r;
    164     double delta = f * f - 4 * e * g;
    165     double dist = DistanceToLine(C.c, l.p, l.p+l.v);
    166     if(dcmp(dist - C.r) == 0)       //相切,此处需特殊判断,不能用delta
    167     {
    168         t1 = t2 = -f / (2 * e);
    169         sol.push_back(l.point(t1));
    170         return 1;
    171     }
    172     if(dcmp(delta) < 0) return 0;       //相离
    173     else        //相交
    174     {
    175         t1 = (-f - sqrt(delta)) / (2 * e);
    176         sol.push_back(l.point(t1));
    177         t2 = (-f + sqrt(delta)) / (2 * e);
    178         sol.push_back(l.point(t2));
    179         return 2;
    180     }
    181 }
    182 
    183 int GetCircleCircleIntersection(Circle C1, Circle C2, vector<Point>& sol)       //求圆与圆的交点
    184 {
    185     double d = Length(C1.c - C2.c);
    186     if(dcmp(d) == 0)
    187     {
    188         if(dcmp(C1.r - C2.r) == 0) return -1;       //两圆重合
    189         return 0;       //同心圆但不重合
    190     }
    191     if(dcmp(C1.r + C2.r - d) < 0) return 0;     //外离
    192     if(dcmp(fabs(C1.r - C2.r) - d) > 0) return 0;       //内含
    193     double a = angle(C2.c - C1.c);
    194     double da = acos((C1.r * C1.r + d * d - C2.r * C2.r) / (2 * C1.r * d));
    195     Point p1 = C1.point(a + da);
    196     Point p2 = C1.point(a - da);
    197     sol.push_back(p1);
    198     if(p1 == p2) return 1;      //外切
    199     sol.push_back(p2);
    200     return 2;
    201 }
    202 
    203 Circle CircumscribedCircle(Point p1, Point p2, Point p3)        //求三角形的外心
    204 {
    205     double Bx = p2.x - p1.x, By = p2.y - p1.y;
    206     double Cx = p3.x - p1.x, Cy = p3.y - p1.y;
    207     double D = 2 * (Bx * Cy - By * Cx);
    208     double cx = (Cy * (Bx * Bx + By * By) - By * (Cx * Cx + Cy * Cy)) / D + p1.x;
    209     double cy = (Bx * (Cx * Cx + Cy * Cy) - Cx * (Bx * Bx + By * By)) / D + p1.y;
    210     Point p(cx, cy);
    211     return Circle(p, Length(p1-p));
    212 }
    213 
    214 Circle InscribedCircle(Point p1, Point p2, Point p3)        //求三角形的内切圆
    215 {
    216     double a = Length(p3 - p2);
    217     double b = Length(p3 - p1);
    218     double c = Length(p2 - p1);
    219     Point p = (p1 * a + p2 * b + p3 * c) / (a + b + c);
    220     return Circle(p, DistanceToLine(p, p2, p3));
    221 }
    222 
    223 int TangentLineThroughPoint(Point p, Circle C, Vector *v)       //求点到圆的直线
    224 {
    225     Vector u = C.c - p;
    226     double dist = Length(u);
    227     if(dcmp(dist - C.r) < 0) return 0;
    228     else if(dcmp(dist - C.r) < eps)
    229     {
    230         v[0] = Rotate(u, pi / 2);
    231         return 1;
    232     }
    233     else
    234     {
    235         double ang = asin(C.r / dist);
    236         v[0] = Rotate(u, ang);
    237         v[1] = Rotate(u, -ang);
    238         return 2;
    239     }
    240 }
    241 
    242 void CircleThroughAPointAndTangentToALineWithRadius(Point p, Point p1, Point p2, double r)
    243 {
    244     Vector AB = p2 - p1;
    245     Vector change1 = Rotate(AB, pi / 2) / Length(AB) * r;
    246     Vector change2 = Rotate(AB, -pi / 2) / Length(AB) * r;
    247     Line l1(p1 + change1, AB);
    248     Line l2(p1 + change2, AB);
    249     vector<Point> sol;
    250     sol.clear();
    251     double t1, t2;
    252     int cnt1 = getLineCircleIntersection(l1, Circle(p, r), t1, t2, sol);
    253     int cnt2 = getLineCircleIntersection(l2, Circle(p, r), t1, t2, sol);
    254     int cnt = cnt1 + cnt2;
    255     if(cnt) sort(sol.begin(), sol.end());
    256     printf("[");
    257     for(int i = 0; i < cnt; i++)
    258     {
    259         printf("(%.6f,%.6f)", sol[i].x, sol[i].y);
    260         if(cnt == 2 && !i) printf(",");
    261     }
    262     puts("]");
    263 }
    264 
    265 void CircleTangentToTwoLinesWithRadius(Point A, Point B, Point C, Point D, double r)
    266 {
    267     Vector AB = B - A;
    268     Vector change = Normal(AB) * r;
    269     Point newA1 = A + change;
    270     Point newA2 = A - change;
    271     Vector CD = D - C;
    272     Vector update = Normal(CD) * r;
    273     Point newC1 = C + update;
    274     Point newC2 = C - update;
    275     Point p[5];
    276     p[0] = GetLineIntersection(Line(newA1, AB), Line(newC1, CD));
    277     p[1] = GetLineIntersection(Line(newA1, AB), Line(newC2, CD));
    278     p[2] = GetLineIntersection(Line(newA2, AB), Line(newC1, CD));
    279     p[3] = GetLineIntersection(Line(newA2, AB), Line(newC2, CD));
    280     sort(p, p + 4);
    281     printf("[");
    282     printf("(%.6f,%.6f)", p[0].x, p[0].y);
    283     for(int i = 1; i < 4; i++)
    284     {
    285         printf(",(%.6f,%.6f)", p[i].x, p[i].y);
    286     }
    287     puts("]");
    288 }
    289 
    290 void CircleTangentToTwoDisjointCirclesWithRadius(Circle C1, Circle C2, double r)
    291 {
    292     Vector CC = C2.c - C1.c;
    293     double rdist = Length(CC);
    294     if(dcmp(2 * r - rdist + C1.r + C2.r) < 0) puts("[]");
    295     else if(dcmp(2 * r - rdist + C1.r + C2.r) == 0)
    296     {
    297         double ang = angle(CC);
    298         Point A = C1.point(ang);
    299         Point B = C2.point(ang + pi);
    300         Point ret = (A + B) / 2;
    301         printf("[(%.6f,%.6f)]
    ", ret.x, ret.y);
    302     }
    303     else
    304     {
    305         Circle A = Circle(C1.c, C1.r + r);
    306         Circle B = Circle(C2.c, C2.r + r);
    307         vector<Point> sol;
    308         sol.clear();
    309         GetCircleCircleIntersection(A, B, sol);
    310         sort(sol.begin(), sol.end());
    311         printf("[(%.6f,%.6f),(%.6f,%.6f)]
    ", sol[0].x, sol[0].y, sol[1].x, sol[1].y);
    312     }
    313 }
    314 
    315 int main()
    316 {
    317     while(scanf("%s", type) == 1)
    318     {
    319         if(strcmp(type, "CircumscribedCircle") == 0)
    320         {
    321             Point p1, p2, p3;
    322             p1.read();
    323             p2.read();
    324             p3.read();
    325             Circle ret = CircumscribedCircle(p1, p2, p3);
    326             printf("(%f,%f,%f)
    ", ret.c.x, ret.c.y, ret.r);
    327         }
    328         else if(strcmp(type, "InscribedCircle") == 0)
    329         {
    330             Point p1, p2, p3;
    331             p1.read();
    332             p2.read();
    333             p3.read();
    334             Circle ret = InscribedCircle(p1, p2, p3);
    335             printf("(%f,%f,%f)
    ", ret.c.x, ret.c.y, ret.r);
    336         }
    337         else if(strcmp(type, "TangentLineThroughPoint") == 0)
    338         {
    339             Circle C;
    340             Point p;
    341             C.read();
    342             p.read();
    343             Vector v[3];
    344             int cnt = TangentLineThroughPoint(p, C, v);
    345             double ret[3];
    346             for(int i = 0; i < cnt; i++)
    347             {
    348                 ret[i] = angle(v[i]);
    349                 if(dcmp(ret[i] - pi) == 0) ret[i] = 0;
    350                 if(dcmp(ret[i]) < 0) ret[i] += pi;
    351             }
    352             sort(ret, ret + cnt);
    353             printf("[");
    354             for(int i = 0; i < cnt; i++)
    355             {
    356                 printf("%.6f", ret[i] / pi * 180);
    357                 if(cnt == 2 && !i) printf(",");
    358             }
    359             puts("]");
    360         }
    361         else if(strcmp(type, "CircleThroughAPointAndTangentToALineWithRadius") == 0)
    362         {
    363             Point p, p1, p2;
    364             double r;
    365             p.read();
    366             p1.read();
    367             p2.read();
    368             scanf("%lf", &r);
    369             CircleThroughAPointAndTangentToALineWithRadius(p, p1, p2, r);
    370         }
    371         else if(strcmp(type, "CircleTangentToTwoLinesWithRadius") == 0)
    372         {
    373             Point A, B, C, D;
    374             double r;
    375             A.read();
    376             B.read();
    377             C.read();
    378             D.read();
    379             scanf("%lf", &r);
    380             CircleTangentToTwoLinesWithRadius(A, B, C, D, r);
    381         }
    382         else
    383         {
    384             Circle C1, C2;
    385             double r;
    386             C1.read();
    387             C2.read();
    388             scanf("%lf", &r);
    389             CircleTangentToTwoDisjointCirclesWithRadius(C1, C2, r);
    390         }
    391     }
    392     return 0;
    393 }
    View Code
  • 相关阅读:
    Django学习路10_创建一个新的数据库,指定列名并修改表名
    设计模式_单例模式的懒汉式实例化
    设计模式_理解单例设计模式
    Django学习路9_流程复习
    Django学习路8_学生表和班级表级联并相互查询信息
    Django学习路7_注册app到能够在页面上显示app网页内容
    es6基础:类、继承、重写
    简单的下拉刷新
    callback&&callback()
    转 五大浏览器四大内核
  • 原文地址:https://www.cnblogs.com/ITUPC/p/4870049.html
Copyright © 2011-2022 走看看