zoukankan      html  css  js  c++  java
  • 三角剖分求多边形面积的交 HDU3060

      1 //三角剖分求多边形面积的交 HDU3060
      2 
      3 #include <iostream>
      4 #include <cstdio>
      5 #include <cstring>
      6 #include <stack>
      7 #include <queue>
      8 #include <cmath>
      9 #include <algorithm>
     10 using namespace std;
     11 
     12 const int maxn = 555;
     13 const int maxisn = 10;
     14 const double eps = 1e-8;
     15 const double pi = acos(-1.0);
     16 
     17 int dcmp(double x) {
     18     if(x > eps) return 1;
     19     return x < -eps ? -1 : 0;
     20 }
     21 
     22 struct Point {
     23     double x, y;
     24     Point() {
     25         x = y = 0;
     26     }
     27     Point(double a, double b) {
     28         x = a, y = b;
     29     }
     30     inline Point operator-(const Point &b)const {
     31         return Point(x - b.x, y - b.y);
     32     }
     33     inline Point operator+(const Point &b)const {
     34         return Point(x + b.x, y + b.y);
     35     }
     36     inline double dot(const Point &b)const {
     37         return x * b.x + y * b.y;
     38     }
     39     inline double cross(const Point &b, const Point &c)const {
     40         return (b.x - x) * (c.y - y) - (c.x - x) * (b.y - y);
     41     }
     42 };
     43 
     44 Point LineCross(const Point &a, const Point &b, const Point &c, const Point &d) {
     45     double u = a.cross(b, c), v = b.cross(a, d);
     46     return Point((c.x * v + d.x * u) / (u + v), (c.y * v + d.y * u) / (u + v));
     47 }
     48 
     49 double PolygonArea(Point p[], int n) {
     50     if(n < 3) return 0.0;
     51     double s = p[0].y * (p[n - 1].x - p[1].x);
     52     p[n] = p[0];
     53     for(int i = 1; i < n; ++ i)
     54         s += p[i].y * (p[i - 1].x - p[i + 1].x);
     55     return fabs(s * 0.5);
     56 }
     57 
     58 double CPIA(Point a[], Point b[], int na, int nb) { //ConvexPolygonIntersectArea
     59     Point p[maxisn], tmp[maxisn];
     60     int i, j, tn, sflag, eflag;
     61     a[na] = a[0], b[nb] = b[0];
     62     memcpy(p, b, sizeof(Point) * (nb + 1));
     63     for(i = 0; i < na && nb > 2; ++ i) {
     64         sflag = dcmp(a[i].cross(a[i + 1], p[0]));
     65         for(j = tn = 0; j < nb; ++ j, sflag = eflag) {
     66             if(sflag >= 0) tmp[tn ++] = p[j];
     67             eflag = dcmp(a[i].cross(a[i + 1], p[j + 1]));
     68             if((sflag ^ eflag) == -2)
     69                 tmp[tn ++] = LineCross(a[i], a[i + 1], p[j], p[j + 1]);
     70         }
     71         memcpy(p, tmp, sizeof(Point) * tn);
     72         nb = tn, p[nb] = p[0];
     73     }
     74     if(nb < 3) return 0.0;
     75     return PolygonArea(p, nb);
     76 }
     77 
     78 double SPIA(Point a[], Point b[], int na, int nb) { //SimplePolygonIntersectArea
     79     int i, j;
     80     Point t1[4], t2[4];
     81     double res = 0, if_clock_t1, if_clock_t2;
     82     a[na] = t1[0] = a[0], b[nb] = t2[0] = b[0];
     83     for(i = 2; i < na; ++ i) {
     84         t1[1] = a[i - 1], t1[2] = a[i];
     85         if_clock_t1 = dcmp(t1[0].cross(t1[1], t1[2]));
     86         if(if_clock_t1 < 0) std::swap(t1[1], t1[2]);
     87         for(j = 2; j < nb; ++ j) {
     88             t2[1] = b[j - 1], t2[2] = b[j];
     89             if_clock_t2 = dcmp(t2[0].cross(t2[1], t2[2]));
     90             if(if_clock_t2 < 0) std::swap(t2[1], t2[2]);
     91             res += CPIA(t1, t2, 3, 3) * if_clock_t1 * if_clock_t2;
     92         }
     93     }
     94     return PolygonArea(a, na) + PolygonArea(b, nb) - res;
     95 }
     96 
     97 Point p1[maxn], p2[maxn];
     98 int n1, n2;
     99 
    100 int main() {
    101     int i;
    102     while(scanf("%d%d", &n1, &n2) != EOF) {
    103         for(i = 0; i < n1; ++ i) scanf("%lf%lf", &p1[i].x, &p1[i].y);
    104         for(i = 0; i < n2; ++ i) scanf("%lf%lf", &p2[i].x, &p2[i].y);
    105         printf("%.2f
    ", SPIA(p1, p2, n1, n2) + eps);
    106     }
    107     return 0;
    108 }
  • 相关阅读:
    codeforces 1249D1/D2 Too Many Segments (贪心)
    codeforces 1244E Minimizing Difference (贪心)
    codeforces 1249C1 + 1249C2 (贪心)
    codeforces 1251D Salary Changing (二分+贪心)
    codeforces 1244C (思维 or 扩展欧几里得)
    P1040 加分二叉树(区间DP)
    POJ 1015 Jury Compromise (记录路径的背包问题)
    混合背包(单调队列优化多重背包)(模板)
    GAMES101系列笔记一 图形学概述与线性代数入门
    力扣514 自由之路
  • 原文地址:https://www.cnblogs.com/ITUPC/p/5891030.html
Copyright © 2011-2022 走看看