zoukankan      html  css  js  c++  java
  • 排列组合lucas模板

     1 //codeforces 559C|51nod1486 Gerald and Giant Chess(组合数学+逆元)
     2 
     3 #include <bits/stdc++.h>
     4 using namespace std;
     5 #define LL long long
     6 typedef pair<int,int> pii;
     7 const int inf = 0x3f3f3f3f;
     8 const int N =2e5+10;
     9 #define clc(a,b) memset(a,b,sizeof(a))
    10 const double eps = 1e-8;
    11 const int MOD = 1e9+7;
    12 void fre() {freopen("in.txt","r",stdin);}
    13 void freout() {freopen("out.txt","w",stdout);}
    14 inline int read() {int x=0,f=1;char ch=getchar();while(ch>'9'||ch<'0') {if(ch=='-') f=-1;ch=getchar();}while(ch>='0'&&ch<='9') {x=x*10+ch-'0';ch=getchar();}return x*f;}
    15 
    16 struct Point{
    17     int x,y;
    18     Point(){}
    19     Point(int _x,int _y):x(_x),y(_y){}
    20     bool operator <(const Point &rhs) const{
    21         if(x==rhs.x) return y<rhs.y;
    22         return x<rhs.x;
    23     }
    24 }p[N];
    25 
    26 int f[N];
    27 int invv[N];
    28 int inv(int x){
    29   int ret=1,y=MOD-2;
    30   while(y){
    31     if(y&1)ret=1ll*ret*x%MOD;
    32     y>>=1;x=1ll*x*x%MOD;
    33   }
    34   return ret; 
    35 }
    36 int C(int n,int m){
    37   if(n<m)return 0;
    38   int ret=1ll*f[n]*invv[m]%MOD;
    39   ret=1ll*ret*invv[n-m]%MOD;
    40   return ret; 
    41 }
    42 int lucas(int n,int m){
    43    if(m == 0) return 1;
    44    return 1ll*C(n % MOD, m % MOD) * lucas(n / MOD, m / MOD) % MOD;
    45 }
    46 
    47 void init(int n,int m){
    48   f[0]=1;
    49   invv[0]=1;
    50   for(int i=1;i<=n+m+5;++i){
    51     f[i]=1ll*i*f[i-1]%MOD;
    52     invv[i]=inv(f[i]);
    53   }
    54 }
    55 
    56 int sum[N];
    57 int main(){
    58     int n,m,q;
    59     scanf("%d%d%d",&n,&m,&q);
    60     init(n,m);
    61     for(int i=1;i<=q;i++){
    62         int x,y;
    63         x=read(),y=read();
    64         p[i]=Point(x,y);
    65     }
    66     p[++q]=Point(n,m);
    67     sort(p+1,p+1+q);
    68     for(int i=1;i<=q;i++){
    69         sum[i]=lucas(p[i].x-1+p[i].y-1,p[i].x-1);
    70         for(int j=1;j<i;j++){
    71             sum[i]=(sum[i]-1LL*sum[j]*lucas(p[i].x-p[j].x+p[i].y-p[j].y,p[i].x-p[j].x)%MOD+MOD)%MOD;
    72         }
    73     }
    74     printf("%d
    ",sum[q]);
    75     return 0;
    76 }
  • 相关阅读:
    Django 想要单独执行文件
    Django基础
    Bootstrap框架
    Font Awesome矢量图标框架
    js函数式编程——蹦床函数
    ie被hao.360劫持的解决方法
    函数式编程——惰性链
    你可能不知道的BFC在实际中的应用
    高度随宽度适应的响应式方案
    腾讯云播放器更新——TCplayer
  • 原文地址:https://www.cnblogs.com/ITUPC/p/5992432.html
Copyright © 2011-2022 走看看