一个不错的2-SAT文章:传送门
问题初入
什么是2-SAT
SAT是适定性(Satisfiability)问题的简称 。一般形式为k-适定性问题,简称 k-SAT。
首先,把「2」和「SAT」拆开。SAT 是 Satisfiability 的缩写,意为可满足性。即一串布尔变量,每个变量只能为真或假。要求对这些变量进行赋值,满足布尔方程。
如何实现2-SAT
一道例题:洛谷P4782 2-SAT例题
首先将每个or的问题转换成假->真问题
然后跑缩点
因为缩点中跑出来的强连通分量的拓扑序已经在过程中求出(虽然是逆序),然后再判断一遍
当 x 所在的强连通分量的拓扑序在 ¬x 所在的强连通分量的拓扑序之后取 x 为真 就可以了。在使用 Tarjan 算法缩点找强连通分量的过程中,已经为每组强连通分量标记好顺序了不过是反着的拓扑序。
上代码
#include<bits/stdc++.h>
#define re register
#define ll long long
using namespace std;
inline int read()
{
ll k=1,sum=0;
char c=getchar();
for(;c<'0' || c>'9';c=getchar()) if(c=='-') k=-1;
for(;c>='0' && c<='9';c=getchar()) sum=sum*10+c-'0';
return sum*k;
}
const int N=1e6+10;
int n,m;
struct Edge{
int to,nxt;
};
int head[N<<1],cnt;
Edge edge[N<<2];
inline void Add(int x,int y){
edge[++cnt].to=y;edge[cnt].nxt=head[x];head[x]=cnt;
}
int dfn[N<<1],ins[N<<1],color[N<<1],low[N<<1],col;
bool vis[N<<1];
int id;
stack<int> S;
inline void Tarjan(int x){
S.push(x);
ins[x]=1;
dfn[x]=low[x]=++id;
for(re int i=head[x];i;i=edge[i].nxt){
int y=edge[i].to;
if(!dfn[y]){
Tarjan(y);
low[x]=min(low[x],low[y]);
}
else if(ins[y]) low[x]=min(low[x],low[y]);
}
if(low[x]==dfn[x]) {
re int k=-1;++col;
while(k!=x){
k=S.top();S.pop();
ins[k]=0;
color[k]=col;
}
}
}
int main()
{
n=read();m=read();
for(re int k=1;k<=m;++k){
int i=read(),a=read(),j=read(),b=read();
Add(i+n*(a&1),j+n*(b^1));
Add(j+n*(b&1),i+n*(a^1));
}
for(re int i=1;i<=n<<1;++i){
if(!dfn[i]) Tarjan(i);
}
for(re int i=1;i<=n;++i)
if(color[i]==color[i+n]){
puts("IMPOSSIBLE");
return 0;
}
puts("POSSIBLE");
for(re int i=1;i<=n;++i) {
cout<<((color[i]<color[i+n])?1:0)<<" ";
}
return 0;
}