zoukankan      html  css  js  c++  java
  • 【题解】crash的数字表格

    p1829 crash的数字表格

    题目要我们求:

    (displaystyle sum_{i=1}^nsum_{j=1}^m lcm(i,j)) 也就是 (displaystyle sum_{i=1}^nsum_{j=1}^m frac{ij}{gcd(i,j)})

    然后我们熟练地接着向下化

    (displaystyle sum_{k=1}^{min(n,m)}sum_{i=1}^nsum_{j=1}^m [gcd(i,j)=k]frac{ij}{k})

    先去掉第一个(sigma),单独看后面,可以转化成

    (displaystyle ksum_{i=1}^{lfloorfrac{n}{k} floor}sum_{j=1}^{lfloorfrac{m}{k} floor} [gcd(i,j)=1]ij)

    不看前面的k,然后莫比乌斯反演

    (displaystyle sum_{i=1}^{lfloorfrac{n}{k} floor}sum_{j=1}^{lfloorfrac{m}{k} floor} sum_{d|gcd(i,j)}mu(d) ij)

    把莫比乌斯函数提到前面

    (displaystyle sum_{d=1}^{min(lfloorfrac{n}{k} floor,lfloorfrac{m}{k} floor)}mu(d) sum_{i=1}^{lfloorfrac{n}{k} floor}sum_{j=1}^{lfloorfrac{m}{k} floor} [d|gcd(i,j)]ij)

    我们故技重施,再来一次经典转化

    (displaystyle sum_{d=1}^{min(lfloorfrac{n}{k} floor,lfloorfrac{m}{k} floor)}mu(d) d^2sum_{i=1}^{lfloorfrac{n}{kd} floor}sum_{j=1}^{lfloorfrac{m}{kd} floor} [1|gcd(i,j)]ij)

    也就是

    (displaystyle sum_{d=1}^{min(lfloorfrac{n}{k} floor,lfloorfrac{m}{k} floor)}mu(d) d^2sum_{i=1}^{lfloorfrac{n}{kd} floor}isum_{j=1}^{lfloorfrac{m}{kd} floor}j)

    然后就化完了,把之前省略掉的加上

    (displaystyle sum_{k=1}^{min(n,m)} ksum_{d=1}^{min(lfloorfrac{n}{k} floor,lfloorfrac{m}{k} floor)}mu(d) d^2sum_{i=1}^{lfloorfrac{n}{kd} floor}isum_{j=1}^{lfloorfrac{m}{kd} floor}j)

    注意到后面两个(sum)可以预处理,中间的莫比乌斯函数也可以预处理,然后数论分块求就好了

    贴个代码吧

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <cmath>
    #include <algorithm>
    #define maxn 10000007
    #define mod 20101009
    
    long long n,m,sum[maxn],s[maxn];
    int mu[maxn],prime[maxn],tot;
    bool vis[maxn];
    
    void getmu() {
    	int k = std::max(n,m);
    	mu[1] = 1;
    	for (int i = 2;i <=k;i++) {
    		if (!vis[i]) prime[++tot] = i,mu[i] = -1;
    		for (int j = 1;j <= tot && (long long)i * prime[j] <= n;j++) {
    			vis[i * prime[j]] = 1;
    			if (i % prime[j] == 0) {
    				mu[i * prime[j]] = 0;
    				break;
    			}
    			mu[i * prime[j]] = -mu[i];
    		}
    	}
    	for (int i = 1;i <= k;i++) sum[i] = (sum[i - 1] + (long long)mu[i] * (long long) i  % mod * i % mod) % mod;
    	for (int i = 1;i <= k;i++) s[i] = (s[i - 1] + i) % mod;
    }
    
    int main() {
    	scanf("%lld%lld",&n,&m);
    	int u = std::min(n,m);
    	long long ans = 0;
    	getmu();
    	for (int k = 1;k <= u;k++) {
    		long long su = 0;
    		int p = 1;
    		while (p <= std::min(n / k,m / k)) {
    			int r = std::min((n / k) / (n / k / p),(m / k) / (m / k / p));
    			(su += (long long)(sum[r] - sum[p - 1] + mod) % mod * (long long)s[n / k / p] % mod * (long long)s[m / k / p] % mod) %= mod;
    			p = r + 1;
    		}
    		(ans += su * k % mod) %= mod;
    	}
    	printf("%lld
    ",ans);
    	return 0;
    }
    
  • 相关阅读:
    近期前端中的 一些常见的面试题
    一道前端学习题
    前端程序员容易忽视的一些基础知识
    web前端工程师入门须知
    Web前端知识体系精简
    面试分享:一年经验初探阿里巴巴前端社招
    抽象类、抽象函数/抽象方法详解
    C#语法-虚方法详解 Virtual 虚函数
    面向对象语言:继承关系教程
    C#动态创建Xml-LinQ方式
  • 原文地址:https://www.cnblogs.com/Illusions/p/14464695.html
Copyright © 2011-2022 走看看