zoukankan      html  css  js  c++  java
  • Maximum Subsequence Sum

    Given a sequence of K integers { N1​​, N2​​, ..., NK​​ }. A continuous subsequence is defined to be { Ni​​, Ni+1​​, ..., Nj​​ } where 1. The Maximum Subsequence is the continuous subsequence which has the largest sum of its elements. For example, given sequence { -2, 11, -4, 13, -5, -2 }, its maximum subsequence is { 11, -4, 13 } with the largest sum being 20.

    Now you are supposed to find the largest sum, together with the first and the last numbers of the maximum subsequence.

    Input Specification:

    Each input file contains one test case. Each case occupies two lines. The first line contains a positive integer K (≤). The second line contains K numbers, separated by a space.

    Output Specification:

    For each test case, output in one line the largest sum, together with the first and the last numbers of the maximum subsequence. The numbers must be separated by one space, but there must be no extra space at the end of a line. In case that the maximum subsequence is not unique, output the one with the smallest indices i and j (as shown by the sample case). If all the K numbers are negative, then its maximum sum is defined to be 0, and you are supposed to output the first and the last numbers of the whole sequence.

    Sample Input:

    10
    -10 1 2 3 4 -5 -23 3 7 -21
    

    Sample Output:

    10 1 4

    题目描述略坑

     1 #include<iostream>
     2 #include<cstdio>
     3 using namespace std;
     4 
     5 const int MAXN=10005;
     6 const int INF=0x7f7f7f7f;
     7 int k,x,y,maxn=-INF;
     8 int a[MAXN],f[MAXN];
     9 
    10 int main()
    11 {
    12     scanf("%d",&k);
    13     for(int i=1;i<=k;i++)
    14         scanf("%d",&a[i]);
    15     f[0]=-1;
    16     for(int i=1;i<=k;i++)
    17     {
    18         f[i]=max(f[i-1]+a[i],a[i]);
    19         if(f[i]>maxn)
    20             y=i,maxn=f[i];
    21     }
    22     for(x=y;x>=1;x--)
    23         if(f[x-1]<0) break;
    24     if(maxn<0)
    25         printf("0 %d %d",a[1],a[k]);
    26     else
    27         printf("%d %d %d",maxn,a[x],a[y]);
    28     return 0;
    29 }
  • 相关阅读:
    纯html的table打印注意事项
    Silverlight:针式打印机文字模糊的改善办法
    C#执行XSL转换
    tomcat 新手上路
    跨浏览器的剪贴板访问解决方案
    打印机设置(PrintDialog)、页面设置(PageSetupDialog) 及 RDLC报表如何选择指定打印机
    利用ActiveX实现web页面设置本地默认打印机、纸张大小
    前端工程化的理解
    算法注意---3、分治的本质
    算法与数据结构---4.9、最大子段和-dp空间优化
  • 原文地址:https://www.cnblogs.com/InWILL/p/10524736.html
Copyright © 2011-2022 走看看