zoukankan      html  css  js  c++  java
  • 模板

    这个是正确的算法,但是复杂度可能会卡到 (O(n^2)) ,加上每个点最多匹配的临近点最多15个/30个限制的话复杂度就可以保证了,最多就再做一次增加正确的几率,我确实不行从头到尾都是随机的怎么有人卡得掉。

    #include<bits/stdc++.h>
    using namespace std;
    
    const double PI = acos(-1.0);
    
    struct Point {
        double x, y;
    } p[200000 + 5];
    
    int n;
    
    inline double RandomDouble() {
        return 1.0 * rand() / RAND_MAX;
    }
    
    inline bool cmp(const Point &a, const Point &b) {
        return a.x < b.x;
    }
    
    inline double dis(const Point &a, const Point &b) {
        return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
    }
    
    double Calc(const double &A, double d) {
        double x0 = -1e9 + 2e9 * RandomDouble(), y0 = -1e9 + 2e9 * RandomDouble(); //随机弄一个旋转原点
        double cosA = cos(A), sinA = sin(A);
        double xc = -x0 * cosA + y0 * sinA + x0;
        double yc = -x0 * sinA - y0 * cosA + y0;
        //利用图形学的知识加速
        for(int i = 1; i <= n; i++) {
            double x = p[i].x, y = p[i].y;
            //p[i].x = (x - x0) * cosA - (y - y0) * sinA + x0;
            //p[i].y = (x - x0) * sinA + (y - y0) * cosA + y0;
            p[i].x = x * cosA - y * sinA + xc;
            p[i].y = x * sinA + y * cosA + yc;
        }
        sort(p + 1, p + 1 + n, cmp);
    
        for(int i = 1; i <= n; i++) {
            for(int j = i + 1; j <= n /*&& j <= i + 15*/ && p[j].x - p[i].x < d; j++)
                d = min(d, dis(p[i], p[j]));
        }
        return d;
    }
    
    int main() {
        srand(time(0));
    
        scanf("%d", &n);
        for(int i = 1; i <= n; i++)
            scanf("%lf%lf", &p[i].x, &p[i].y);
    
        double d = 1e36;
        d = Calc(RandomDouble() * 2.0 * PI, d);
        //d = Calc(RandomDouble() * 2.0 * PI, d);
        printf("%.4f
    ", d);
        return 0;
    }
    

    分治算法,虽然每一层里面都排序,但实际上选出的点并不多。

    #include<bits/stdc++.h>
    using namespace std;
    
    const double INF = 1e36;
    
    const int MAXN = 200000;
    
    int n, tmp[MAXN];
    struct Point {
        double x, y;
    } S[MAXN + 5];
    
    bool cmpx(const Point &a, const Point&b) {
        return a.x < b.x;
    }
    
    bool cmpidy(const int &a, const int &b) {
        return S[a].y < S[b].y ;
    }
    
    inline double min(const double &a, const double &b) {
        return a < b ? a : b;
    }
    
    inline double dist(const int &i, const int &j) {
        return sqrt((S[i].x - S[j].x) * (S[i].x - S[j].x) + (S[i].y - S[j].y) * (S[i].y - S[j].y));
    }
    
    double merge(int left, int right) {
        double d = INF;
        if(left == right)
            return d ;
        if(left + 1 == right)
            return dist(left, right);
        int mid = left + right >> 1;
        double d1 = merge(left, mid) ;
        double d2 = merge(mid + 1, right) ;
        d = min(d1, d2);
        int i, j, k = 0;
        for(i = left; i <= right; i++)
            if(fabs(S[mid].x - S[i].x) <= d)
                tmp[++k] = i;
        sort(tmp + 1, tmp + k + 1, cmpidy);
        for(i = 1; i <= k; i++)
            for(j = i + 1; j <= k && S[tmp[j]].y - S[tmp[i]].y < d; j++) {
                double d3 = dist(tmp[i], tmp[j]);
                if(d > d3)
                    d = d3;
            }
        return d;
    }
    
    int main() {
        scanf("%d", &n);
        for(int i = 1; i <= n; i++)
            scanf("%lf%lf", &S[i].x, &S[i].y);
        sort(S + 1, S + n + 1, cmpx);
        printf("%.4f
    ", merge(1, n));
        return 0;
    }
    

    效率更高的随机算法,但是不能保证正确性因为只取了至多后10个点,假如把这个去掉又有可能被卡成T,不过从旋转角到旋转原点都是完全随机的,多试几次可能就行了,假如不放心的话可以多Calc几次。
    假如取至多后20个点的话应该是极限了,假如后20个点都过不了宁愿再重新Calc一次吧。

    #include<bits/stdc++.h>
    using namespace std;
    
    const double PI = acos(-1.0);
    
    struct Point {
        double x, y;
    } p[200000 + 5];
    
    int n;
    
    inline double RandomDouble() {
        return 1.0 * rand() / RAND_MAX;
    }
    
    inline bool cmp(const Point &a, const Point &b) {
        return a.x < b.x;
    }
    
    inline double dis(const Point &a, const Point &b) {
        return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
    }
    
    double Calc(const double &A) {
        double x0 = -10.0 + 20.0 * RandomDouble(), y0 = -10.0 + 20.0 * RandomDouble(); //随机弄一个旋转原点
        for(int i = 1; i <= n; i++) {
            double x = p[i].x, y = p[i].y, xn, yn;
            xn = (x - x0) * cos(A) - (y - y0) * sin(A) + x0 ;
            yn = (x - x0) * sin(A) + (y - y0) * cos(A) + y0 ;
            p[i].x = xn;
            p[i].y = yn;
        }
        sort(p + 1, p + 1 + n, cmp);
    
        double d = 1e36;
        for(int i = 1; i <= n; i++) {
            for(int j = i + 1; j <= n && j <= i + 10 && p[j].x - p[i].x < d; j++)
                d = min(d, dis(p[i], p[j]));
        }
        return d;
    }
    
    int main() {
        srand(time(0));
    
        scanf("%d", &n);
        for(int i = 1; i <= n; i++)
            scanf("%lf%lf", &p[i].x, &p[i].y);
    
        printf("%.4f
    ", Calc(RandomDouble() * 2.0 * PI));
        return 0;
    }
    

    类似这样?

    #include<bits/stdc++.h>
    using namespace std;
    
    const double PI = acos(-1.0);
    
    struct Point {
        double x, y;
    } p[200000 + 5];
    
    int n;
    
    inline double RandomDouble() {
        return 1.0 * rand() / RAND_MAX;
    }
    
    inline bool cmp(const Point &a, const Point &b) {
        return a.x < b.x;
    }
    
    inline double dis(const Point &a, const Point &b) {
        return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
    }
    
    double Calc(const double &A, double d) {
        double x0 = -1e9 + 2e9 * RandomDouble(), y0 = -1e9 + 2e9 * RandomDouble(); //随机弄一个旋转原点
        for(int i = 1; i <= n; i++) {
            double x = p[i].x, y = p[i].y, xn, yn;
            xn = (x - x0) * cos(A) - (y - y0) * sin(A) + x0 ;
            yn = (x - x0) * sin(A) + (y - y0) * cos(A) + y0 ;
            p[i].x = xn;
            p[i].y = yn;
        }
        sort(p + 1, p + 1 + n, cmp);
    
        for(int i = 1; i <= n; i++) {
            for(int j = i + 1; j <= n && j <= i + 15 && p[j].x - p[i].x < d; j++)
                d = min(d, dis(p[i], p[j]));
        }
        return d;
    }
    
    int main() {
        srand(time(0));
    
        scanf("%d", &n);
        for(int i = 1; i <= n; i++)
            scanf("%lf%lf", &p[i].x, &p[i].y);
    
        double d = 1e36;
        d = Calc(RandomDouble() * 2.0 * PI, d);
        d = Calc(RandomDouble() * 2.0 * PI, d);
        printf("%.4f
    ", d);
        return 0;
    }
    

    卡了一下常数,有很多多余的浮点运算。假如把至多后15个点的限制去掉正确性就可以保证了,但是复杂度可能会爆炸,不过这样子就只需要计算一次就可以了。

    #include<bits/stdc++.h>
    using namespace std;
    
    const double PI = acos(-1.0);
    
    struct Point {
        double x, y;
    } p[200000 + 5];
    
    int n;
    
    inline double RandomDouble() {
        return 1.0 * rand() / RAND_MAX;
    }
    
    inline bool cmp(const Point &a, const Point &b) {
        return a.x < b.x;
    }
    
    inline double dis(const Point &a, const Point &b) {
        return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
    }
    
    double Calc(const double &A, double d) {
        double x0 = -1e9 + 2e9 * RandomDouble(), y0 = -1e9 + 2e9 * RandomDouble(); //随机弄一个旋转原点
        double cosA = cos(A), sinA = sin(A);
        double xc = -x0 * cosA + y0 * sinA + x0;
        double yc = -x0 * sinA - y0 * cosA + y0;
        //利用图形学的知识加速
        for(int i = 1; i <= n; i++) {
            double x = p[i].x, y = p[i].y, xn, yn;
            //p[i].x = (x - x0) * cosA - (y - y0) * sinA + x0;
            //p[i].y = (x - x0) * sinA + (y - y0) * cosA + y0;
            p[i].x = x * cosA - y * sinA + xc;
            p[i].y = x * sinA + y * cosA + yc;
        }
        sort(p + 1, p + 1 + n, cmp);
    
        for(int i = 1; i <= n; i++) {
            for(int j = i + 1; j <= n /*&& j <= i + 15*/ && p[j].x - p[i].x < d; j++)
                d = min(d, dis(p[i], p[j]));
        }
        return d;
    }
    
    int main() {
        srand(time(0));
    
        scanf("%d", &n);
        for(int i = 1; i <= n; i++)
            scanf("%lf%lf", &p[i].x, &p[i].y);
    
        double d = 1e36;
        d = Calc(RandomDouble() * 2.0 * PI, d);
        //d = Calc(RandomDouble() * 2.0 * PI, d);
        printf("%.4f
    ", d);
        return 0;
    }
    
  • 相关阅读:
    Python基础编程常用模块汇总
    博客目录
    网络编程
    python 对象
    python模块和规范开发
    python常用内置函数
    python递归函数和匿名函数
    python装饰器
    python迭代器,生成器,推导式
    python作用域
  • 原文地址:https://www.cnblogs.com/Inko/p/11516098.html
Copyright © 2011-2022 走看看