二分答案+单源最短路
POJ原题链接
洛谷原题链接
显然可以二分答案,检验(mid)可以使用最短路来解决。
将大于(mid)的边看成长度为(1)的边,说明要使用免费升级服务,否则长度为(0)边,即不需要占免费的资格。
然后就可以在上面跑最短路,如果(dis[n]>k)说明该答案不可行,将答案改大,否则说明可行,往小的去尝试。
而针对长度只有(0,1)的图可以使用双端队列的(BFS)来解决,不过我这种懒人就直接跑(SPFA)了。
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int N = 1010;
const int M = 1e4 + 10;
int fi[N], ne[M << 1], di[M << 1], da[M << 1], dis[N], a[M], q[M << 1], l, k, n;
bool v[N];
int re()
{
int x = 0;
char c = getchar();
bool p = 0;
for (; c<'0' || c>'9'; c = getchar())
p = (c == '-' || p) ? 1 : 0;
for (; c >= '0'&&c <= '9'; c = getchar())
x = x * 10 + (c - '0');
return p ? -x : x;
}
inline void add(int x, int y, int z)
{
di[++l] = y;
da[l] = z;
ne[l] = fi[x];
fi[x] = l;
}
bool judge(int o)
{
memset(dis, 60, sizeof(dis));
memset(v, 0, sizeof(v));
int i, x, y, z, head = 0, tail = 1;
dis[1] = 0;
q[1] = 1;
while (head != tail)
{
x = q[++head];
v[x] = 0;
for (i = fi[x]; i; i = ne[i])
{
y = di[i];
z = da[i] > o ? 1 : 0;
if (dis[y] > dis[x] + z)
{
dis[y] = dis[x] + z;
if (!v[y])
{
q[++tail] = y;
v[y] = 1;
}
}
}
}
if (dis[n] > k)
return false;
return true;
}
int main()
{
int i, m, x, y, ll, r, mid, an = -1;
n = re();
m = re();
k = re();
for (i = 1; i <= m; i++)
{
x = re();
y = re();
a[i] = re();
add(x, y, a[i]);
add(y, x, a[i]);
}
sort(a + 1, a + m + 1);
ll = 0;
r = m;
while (ll <= r)
{
mid = (ll + r) >> 1;
if (judge(a[mid]))
{
r = mid - 1;
an = a[mid];
}
else
ll = mid + 1;
}
printf("%d", an);
return 0;
}