一道LCA模板
原题链接
(LCA)模板题,不解释。
倍增版
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
const int N = 4e4 + 10;
int fi[N], da[N << 1], di[N << 1], ne[N << 1], de[N], dis[N], f[N][17], gn, l;
inline int re()
{
int x = 0;
char c = getchar();
bool p = 0;
for (; c<'0' || c>'9'; c = getchar())
p |= c == '-';
for (; c >= '0'&&c <= '9'; c = getchar())
x = x * 10 + (c - '0');
return p ? -x : x;
}
inline void sw(int &x, int &y)
{
int z = x;
x = y;
y = z;
}
inline void add(int x, int y, int z)
{
di[++l] = y;
da[l] = z;
ne[l] = fi[x];
fi[x] = l;
}
void dfs(int x)
{
int i, y;
for (i = 1; i <= gn; i++)
f[x][i] = f[f[x][i - 1]][i - 1];
for (i = fi[x]; i; i = ne[i])
{
y = di[i];
if (y != f[x][0])
{
de[y] = de[x] + 1;
dis[y] = dis[x] + da[i];
f[y][0] = x;
dfs(y);
}
}
}
int lca(int x, int y)
{
int i;
if (de[x] > de[y])
sw(x, y);
for (i = gn; ~i; i--)
if (de[f[y][i]] >= de[x])
y = f[y][i];
if (!(x^y))
return x;
for (i = gn; ~i; i--)
if (f[x][i] ^ f[y][i])
{
x = f[x][i];
y = f[y][i];
}
return f[x][0];
}
int main()
{
int i, n, m, x, y, z, t;
t = re();
while (t--)
{
n = re();
m = re();
memset(fi, 0, sizeof(fi));
l = 0;
gn = log2(n);
for (i = 1; i < n; i++)
{
x = re();
y = re();
z = re();
add(x, y, z);
add(y, x, z);
}
de[1] = 1;
dfs(1);
for (i = 1; i <= m; i++)
{
x = re();
y = re();
printf("%d
", dis[x] + dis[y] - (dis[lca(x, y)] << 1));
}
}
return 0;
}
(tarjan)版
#include<cstdio>
using namespace std;
const int N = 4e4 + 10;
const int M = 210;
struct dd {
int y, nex, id;
};
dd q[M << 1];
int fi[N], di[N << 1], da[N << 1], ne[N << 1], dis[N], fa[N], an[M], fi_q[N], v[N], l, lq;
inline int re()
{
int x = 0;
char c = getchar();
bool p = 0;
for (; c<'0' || c>'9'; c = getchar())
p |= c == '-';
for (; c >= '0'&&c <= '9'; c = getchar())
x = x * 10 + (c - '0');
return p ? -x : x;
}
inline void add(int x, int y, int z)
{
di[++l] = y;
da[l] = z;
ne[l] = fi[x];
fi[x] = l;
}
inline int fin(int x)
{
if (!(x^fa[x]))
return x;
return fa[x] = fin(fa[x]);
}
inline void add_qu(int x, int y, int z)
{
q[++lq].y = y;
q[lq].nex = fi_q[x];
q[lq].id = z;
fi_q[x] = lq;
}
void tarjan(int x)
{
int i, y;
v[x] = 1;
for (i = fi[x]; i; i = ne[i])
{
y = di[i];
if (!v[y])
{
dis[y] = dis[x] + da[i];
tarjan(y);
fa[y] = x;
}
}
for (i = fi_q[x]; i; i = q[i].nex)
{
y = q[i].y;
if (!(v[y] ^ 2))
an[q[i].id] = dis[x] + dis[y] - (dis[fin(y)] << 1);
}
v[x] = 2;
}
int main()
{
int i, n, m, x, y, z, t;
t = re();
while (t--)
{
n = re();
m = re();
for (i = 1; i <= n; i++)
{
fa[i] = i;
fi[i] = fi_q[i] = v[i] = 0;
}
l = lq = 0;
for (i = 1; i < n; i++)
{
x = re();
y = re();
z = re();
add(x, y, z);
add(y, x, z);
}
for (i = 1; i <= m; i++)
{
x = re();
y = re();
if (x^y)
an[i] = 0;
add_qu(x, y, i);
add_qu(y, x, i);
}
tarjan(1);
for (i = 1; i <= m; i++)
printf("%d
", an[i]);
}
return 0;
}