原题链接
记忆化搜索。
先在反图上跑一边最短路,求出(dis[x]),表示点(x)到点(n)的最短距离,当然也同时也排除了不能到达(n)的点。
设(f[x][k])表示从(x)点走到(n)点允许比(dis[x])多走(k)距离的方案数,(a_i)表示(x)能到达的点,且边权为(v_i),共(s_x)个,则有转移方程:
(qquadqquad f[x][k] = sumlimits_{i = 1}^{i leqslant s_x} f[a_i][k - (dis[a_i] + v_i - dis[x])])
最后的答案就是(f[1][K])。
至于判断零环则可以另开一个数组(sta[x][k])(可以理解为栈),当搜到((x,k))的状态时,若(sta[x][k])为(1),即该状态还在栈里,就返回(-1)。
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
const int N = 1e5 + 10;
const int M = 2e5 + 10;
const int K = 55;
struct dd{
int x, D;
bool operator < (const dd &b) const
{
return D > b.D;
}
};
int fi[N], di[M], ne[M], da[M], f_fi[N], f_ne[M], f_di[M], f_da[M], dis[N], f[N][K], l, fl, p, n;
bool v[N], sta[N][K];
priority_queue<dd>q;
inline int re()
{
int x = 0;
char c = getchar();
bool p = 0;
for (; c < '0' || c > '9'; c = getchar())
p |= c == '-';
for (; c >= '0' && c <= '9'; c = getchar())
x = x * 10 + c - '0';
return p ? -x : x;
}
inline void add(int x, int y, int z)
{
di[++l] = y;
da[l] = z;
ne[l] = fi[x];
fi[x] = l;
f_di[++fl] = x;
f_da[fl] = z;
f_ne[fl] = f_fi[y];
f_fi[y] = fl;
}
void dij()
{
int i, x, y;
q.push((dd){n, 0});
dis[n] = 0;
while (!q.empty())
{
x = q.top().x;
q.pop();
if (v[x])
continue;
v[x] = 1;
for (i = f_fi[x]; i; i = f_ne[i])
if (dis[y = f_di[i]] > dis[x] + f_da[i])
{
dis[y] = dis[x] + f_da[i];
q.push((dd){y, dis[y]});
}
}
}
int dfs(int x, int k)
{
int i, y, va;
if (sta[x][k])
return -1;
if (f[x][k])
return f[x][k];
sta[x][k] = 1;
f[x][k] = x ^ n ? 0 : 1;
for (i = fi[x]; i; i = ne[i])
if ((va = dis[y = di[i]] - dis[x] + da[i]) <= k)
{
if ((va = dfs(y, k - va)) < 0)
return f[x][k] = -1;
f[x][k] = (f[x][k] + va) % p;
}
sta[x][k] = 0;
return f[x][k];
}
int main()
{
int i, m, x, y, z, t, k;
t = re();
while (t--)
{
n = re();
m = re();
k = re();
p = re();
memset(fi, 0, sizeof(fi));
memset(f_fi, 0, sizeof(f_fi));
memset(f, 0, sizeof(f));
memset(sta, 0, sizeof(sta));
memset(dis, 60, sizeof(dis));
memset(v, 0, sizeof(v));
l = fl = 0;
for (i = 1; i <= m; i++)
{
x = re();
y = re();
z = re();
add(x, y, z);
}
dij();
printf("%d
", dfs(1, k));
}
return 0;
}