zoukankan      html  css  js  c++  java
  • [JSOI2007]文本生成器 [AC自动机,dp]

    时刻要记住正难则反,可以知道总数是 (26^m),我们可以减掉不合法的。
    AC自动机上面dp,不合法的显然就是没有出现任意的一个串,根据rainy的教导
    单词 (b,bce,abcd) 的 ACAM



    然后 (dp) 就好了,由于点数不超过 (n*m leq 6000),然后你每一位枚举复杂度是 (m^2n)
    可以通过本题

    // powered by c++11
    // by Isaunoya
    #include <bits/stdc++.h>
    #define rep(i, x, y) for (register int i = (x); i <= (y); ++i)
    #define Rep(i, x, y) for (register int i = (x); i >= (y); --i)
    using namespace std;
    using db = double;
    using ll = long long;
    using uint = unsigned int;
    #define Tp template
    using pii = pair<int, int>;
    #define fir first
    #define sec second
    Tp<class T> void cmax(T& x, const T& y) {if (x < y) x = y;} Tp<class T> void cmin(T& x, const T& y) {if (x > y) x = y;}
    #define all(v) v.begin(), v.end()
    #define sz(v) ((int)v.size())
    #define pb emplace_back
    Tp<class T> void sort(vector<T>& v) { sort(all(v)); } Tp<class T> void reverse(vector<T>& v) { reverse(all(v)); }
    Tp<class T> void unique(vector<T>& v) { sort(all(v)), v.erase(unique(all(v)), v.end()); }
    const int SZ = 1 << 23 | 233;
    struct FILEIN { char qwq[SZ], *S = qwq, *T = qwq, ch;
    #ifdef __WIN64
    #define GETC getchar
    #else
      char GETC() { return (S == T) && (T = (S = qwq) + fread(qwq, 1, SZ, stdin), S == T) ? EOF : *S++; }
    #endif
      FILEIN& operator>>(char& c) {while (isspace(c = GETC()));return *this;}
      FILEIN& operator>>(string& s) {while (isspace(ch = GETC())); s = ch;while (!isspace(ch = GETC())) s += ch;return *this;}
      Tp<class T> void read(T& x) { bool sign = 0;while ((ch = GETC()) < 48) sign ^= (ch == 45); x = (ch ^ 48);
        while ((ch = GETC()) > 47) x = (x << 1) + (x << 3) + (ch ^ 48); x = sign ? -x : x;
      }FILEIN& operator>>(int& x) { return read(x), *this; } FILEIN& operator>>(ll& x) { return read(x), *this; }
    } in;
    struct FILEOUT {const static int LIMIT = 1 << 22 ;char quq[SZ], ST[233];int sz, O;
      ~FILEOUT() { flush() ; }void flush() {fwrite(quq, 1, O, stdout); fflush(stdout);O = 0;}
      FILEOUT& operator<<(char c) {return quq[O++] = c, *this;}
      FILEOUT& operator<<(string str) {if (O > LIMIT) flush();for (char c : str) quq[O++] = c;return *this;}
      Tp<class T> void write(T x) {if (O > LIMIT) flush();if (x < 0) {quq[O++] = 45;x = -x;}
    		do {ST[++sz] = x % 10 ^ 48;x /= 10;} while (x);while (sz) quq[O++] = ST[sz--];
      }FILEOUT& operator<<(int x) { return write(x), *this; } FILEOUT& operator<<(ll x) { return write(x), *this; }
    } out;
    #define int long long
    
    int n , m ;
    
    const int maxn = 66 ;
    const int maxm = 111 ;
    
    int dp[maxm][maxn * maxm] ;
    const int mod = 10007 ;
    
    int qpow(int x , int y) {
    	int ans = 1 ;
    	for( ; y ; y >>= 1 , x = x * x % mod)
    		if(y & 1)
    			ans = ans * x % mod ;
    	return ans ; 
    }
    
    struct ACAM {
    	int ch[maxn * maxm][26] , fail[maxn * maxm] , ed[maxn * maxm] , cnt = 1 ;
    	
    	void ins(string s) {
    		int p = 1 ;
    		for(char x : s) {
    			int c = x - 'A' ;
    			if(! ch[p][c]) ch[p][c] = ++ cnt ;
    			p = ch[p][c] ;
    		}
    		ed[p] |= 1 ;
    	}
    	
    	void build() {
    		queue < int > q ;
    		for(int i = 0 ; i < 26 ; i ++)
    			if(ch[1][i])
    				fail[ch[1][i]] = 1 , q.push(ch[1][i]) ;
    			else
    				ch[1][i] = 1 ;
    		
    		while(! q.empty()) {
    			int u = q.front() ;
    			q.pop() ;
    			for(int i = 0 ; i < 26 ; i ++)
    				if(ch[u][i])
    					fail[ch[u][i]] = ch[fail[u]][i] , ed[ch[u][i]] |= ed[fail[ch[u][i]]] , q.push(ch[u][i]) ;
    				else
    					ch[u][i] = ch[fail[u]][i] ;
    		}
    	}
    	
    	int solve() {
    		memset(dp , 0 , sizeof(dp)) ;
    		dp[0][1] = 1 ;
    		rep(i , 0 , m - 1)
    			rep(j , 1 , cnt)
    				rep(k , 0 , 25)
    					if(! ed[ch[j][k]]) 
    						(dp[i + 1][ch[j][k]] += dp[i][j]) %= mod ;
    		int qwq = 0 ;
    		rep(i , 1 , cnt) (qwq += dp[m][i]) %= mod ;
    		return qwq ;
    	}
    } acam ;
    
    
    signed main() {
      // code begin.
    	in >> n >> m ;
    	rep(i , 1 , n) {
    		string s ;
    		in >> s ;
    		acam.ins(s) ;
    	}
    	acam.build() ;
    	int ans = qpow(26 , m) ;
    	(ans += mod - acam.solve()) %= mod ;
    	out << ans << '
    ' ;
    	return 0;
      // code end.
    }
    
  • 相关阅读:
    如何处理iOS中照片的方向
    Builder Pattern 在 Objective-C 中的使用
    多线程(三)-- 线程安全问题
    多线程(二)--NSThread基本使用
    多线程 (一)
    报错:Request failed: unacceptable content-type: text/html
    Cocoapods简单安装和使用
    Objective
    Objective
    Python学习笔记(一)--注释
  • 原文地址:https://www.cnblogs.com/Isaunoya/p/12402038.html
Copyright © 2011-2022 走看看