zoukankan      html  css  js  c++  java
  • P3769 [CH弱省胡策R2]TATT [KD-Tree]

    四维显然不能跑,我们直接排序一下,然后三维数点,插入到 kdt,dp 一下即可。

    // by Isaunoya
    #include<bits/stdc++.h>
    #define int long long
    using namespace std;
    struct io {
    	char buf[1 << 27 | 3], *s;
    	int f;
    	io() { f = 0, buf[fread(s = buf, 1, 1 << 27, stdin)] = '
    '; }
    	io& operator >> (int&x) {
    		for(x = f = 0; !isdigit(*s); ++s) f |= *s  == '-';
    		while(isdigit(*s)) x = x * 10 + (*s++ ^ 48);
    		return x = f ? -x : x, *this;
    	}
    };
    int f = 0, flag = 0;
    const int K = 4;
    const int maxn = 1e5 + 51;
    struct point {
    	int d[K], w;
    	bool operator < (const point& p) const {
    		if(d[f] ^ p.d[f]) { return d[f] < p.d[f]; }
    		for(int i = 0 ; i < K - flag ; i ++) {
    			if(d[i] ^ p.d[i]) { return d[i] < p.d[i]; }
    		}
    		return 0;
    	}
    };
    
    void cmax(int&x, const int&y) {
    	if(x < y) x = y;
    }
    void cmin(int&x, const int&y) {
    	if(x > y) x = y;
    }
    
    const double alpha = 0.75;
    template < short K >
    struct KDT {
    #define ls son[0]
    #define rs son[1]
    	struct tree {
    		int sz, mxw;
    		tree *son[2];
    		point range, mn, mx;
    		void up() {
    			sz = ls -> sz + rs -> sz + 1;
    			mxw = range.w;
    			cmax(mxw, ls -> mxw);
    			cmax(mxw, rs -> mxw);
    			mx = mn = range;
    			for(int i = 0 ; i < K ; i ++) {
    				cmin(mn.d[i], ls -> mn.d[i]);
    				cmin(mn.d[i], rs -> mn.d[i]);
    				cmax(mx.d[i], ls -> mx.d[i]);
    				cmax(mx.d[i], rs -> mx.d[i]);
    			}
    		}
    		bool unb() {
    			return ls -> sz > sz * alpha || rs -> sz > sz * alpha;
    		}
    		bool in(point a, point b) {
    			for(int i = 0 ; i < K ; i ++)
    				if(a.d[i] > mn.d[i] || b.d[i] < mx.d[i])
    					return 0;
    			return 1;
    		}
    		bool out(point a, point b) {
    			for(int i = 0 ; i < K ; i ++)
    				if(a.d[i] > mx.d[i] || b.d[i] < mn.d[i])
    					return 1;
    			return 0;
    		}
    		bool at(point a, point b) {
    			for(int i = 0 ; i < K ; i ++)
    				if(range.d[i] < a.d[i] || range.d[i] > b.d[i])
    					return 0;
    			return 1;
    		}
    	} pool[maxn], * tail, * null, * root, * rec[maxn];
    	int top;
    	point down;
    	
    	void init() {
    		tail = pool;
    		null = tail ++;
    		for(int i = 0 ; i < K ; i ++)
    			null -> mn.d[i] = 1e18;
    		for(int i = 0 ; i < K ; i ++)
    			null -> mx.d[i] = -1e18;
    		down = null -> mx;
    		null -> son[0] = null -> son[1] = null;
    		root = null;
    	}
    	
    	tree * newnode(point x) {
    		tree *p = top ? rec[top --] : tail ++;
    		p -> son[0] = p -> son[1] = null;
    		p -> range = p -> mn = p -> mx = x;
    		p -> mxw = x.w, p -> sz = 1;
    		return p;
    	}
    	
    	point b[maxn];
    	int cnt;
    	void trv(tree *p) {
    		if(p == null) return;
    		trv(p -> ls);
    		b[++ cnt] = p -> range;
    		rec[++ top] = p;
    		trv(p -> rs);
    	}
    	
    	tree * build(int l, int r, int d) {
    		if(l > r) return null;
    		int mid = l + r >> 1;
    		f = d;
    		nth_element(b + l, b + mid, b + r + 1);
    		tree * p = newnode(b[mid]);
    		if(l == r) return p;
    		p -> ls = build(l, mid - 1, (d + 1) % K);
    		p -> rs = build(mid + 1, r, (d + 1) % K);
    		p -> up(); return p;
    	}
    	
    	void rebld(tree*&p) {
    		cnt = 0, trv(p), p = build(1, cnt, 0);
    	}
    	
    	int ans;
    	void qry(tree*p, point a,point b) {
    		if(p == null) return;
    		if(p -> out(a, b)) return;
    		if(p -> in(a, b)) {
    			cmax(ans,  p -> mxw);
    			return;
    		}
    		cmax(ans, p -> at(a, b)? p -> range.w : 0);
    		if(p -> ls -> mxw > ans) qry(p -> ls, a, b);
    		if(p -> rs -> mxw > ans) qry(p -> rs, a, b);
    	}
    	
    	tree ** ins(tree *&p, point x, int d) {
    		if(p == null) {
    			p = newnode(x);
    			return &null;
    		}
    		tree **unb = ins(p -> son[p -> range.d[d] < x.d[d]], x, (d + 1) % K);
    		p -> up();
    		if(p -> unb()) unb = &p;
    		return unb;
    	}
    	
    	int qry(point up) {
    		ans = 0;
    		qry(root, down, up);
    		return ans;
    	}
    	
    	void ins(point p) {
    		tree ** unb = ins(root, p, 0);
    		if(*unb == null) return;
    		rebld(*unb);
    	}
    };
    
    KDT <K - 1> kdt;
    
    point a[maxn];
    signed main() {
    #ifdef LOCAL
    	freopen("testdata.in", "r", stdin);
    #endif
    	kdt.init();
    	int n;
    //	io in;
    #define in cin
    	ios :: sync_with_stdio(false);
    	cin.tie(nullptr);
    	cout.tie(nullptr);
    	in >> n;
    	for(int i = 1 ; i <= n ; i ++) {
    		for(int j = 0 ; j < K ; j ++) {
    			in >> a[i].d[j];
    		}
    	}
    	sort(a + 1, a + n + 1);
    	flag = 1;
    	for(int i = 1 ; i <= n ; i ++) {
    		for(int j = 0 ; j < K - 1 ; j ++)
    			a[i].d[j] = a[i].d[j + 1];
    	}
    	int ans = 0;
    	for(int i = 1 ; i <= n ; i ++) {
    		a[i].w = kdt.qry(a[i]) + 1;
    		ans = max(ans, a[i].w);
    		kdt.ins(a[i]);
    	}
    	cout << ans << '
    ';
    	return 0;
    }
    
  • 相关阅读:
    hdu3457(有向图的dp问题)
    nyoj16矩形嵌套(第一道dp关于dag的题目)
    noj1475(递推题)统计多少个1
    hdu1331(记忆化搜索)
    hdu1142(dj+记忆化搜索)
    hdu1978(记忆化搜索)
    用广搜实现的spfa
    hdu1428(记忆化搜索)
    hdu1078(记忆化搜索)
    poj3261(后缀数组)
  • 原文地址:https://www.cnblogs.com/Isaunoya/p/12818881.html
Copyright © 2011-2022 走看看