又是喜闻乐见的(k)次幂求和题目
那么(S(x) = sumlimits_{i=1}^n dist(i,x)^k = sumlimits_{i=1}^n sumlimits_{j=1}^k inom{dist(i,x)}{j} left{ egin{array}{cccc} k \ j end{array} ight} j! = sumlimits_{j=1}^k left{ egin{array}{cccc} k \ j end{array} ight} j! sumlimits_{i=1}^n inom{dist(i,x)}{j})。
因为组合数有优秀的性质:(inom{i+1}{j}=inom{i}{j} + inom{i}{j - 1}),可以用这一个式子做一个DP。
设(x)和(x)的子树集合为(S_x),(dp_{i,j}=sumlimits_{x in S_i}inom{dist(i,x)}{j}),转移的时候考虑(i)的孩子(x),(dp_x)中的所有(dist)都会加上(1),也就是说(dp_{i,j} += sumlimits_{y in S_x} inom{dist(x,y)+1}{j} = sumlimits_{y in S_x} (inom{dist(x,y)}{j}+inom{dist(x,y)}{j-1}) = dp_{x,j}+dp_{x,j-1}),初始每一个节点(i)的(dp_{i,0}=1),其余为(0)。
接下来设(up_{i,j} = sumlimits_{x otin S_i}inom{dist(i,x)}{j}),转移从一个点(i)转移到它的孩子(x),将(dp_x)对(dp_i)的贡献消除之后得到(dp'_i),那么不难得到(up_{x,j} = up_{i,j}+up_{i,j-1}+dp'_{i,j}+dp'_{i,j-1})。
最后(sumlimits_{i=1}^n inom{dist(i,x)}{j} = dp_{x,j} + up_{x,j})。
#include<bits/stdc++.h>
//this code is written by Itst
using namespace std;
int read(){
int a = 0; char c = getchar();
while(!isdigit(c)) c = getchar();
while(isdigit(c)){
a = a * 10 + c - 48;
c = getchar();
}
return a;
}
const int _ = 50003 , MOD = 10007;
struct Edge{
int end , upEd;
}Ed[_ << 1];
int dp[_][157] , up[_][157] , tmp[157] , S[157][157] , ans[_];
int N , K , head[_] , cntEd;
void addEd(int a , int b){
Ed[++cntEd] = (Edge){b , head[a]};
head[a] = cntEd;
}
void dfs1(int x , int p){//dp
dp[x][0] = 1;
for(int i = head[x] ; i ; i = Ed[i].upEd)
if(Ed[i].end != p){
dfs1(Ed[i].end , x);
for(int j = K ; j ; --j)
dp[x][j] = (dp[x][j] + dp[Ed[i].end][j] + dp[Ed[i].end][j - 1]) % MOD;
dp[x][0] = (dp[x][0] + dp[Ed[i].end][0]) % MOD;
}
}
void dfs2(int x , int p){//up
for(int i = 0 ; i <= K ; ++i)
tmp[i] = (up[x][i] + dp[x][i]) % MOD;
for(int i = head[x] ; i ; i = Ed[i].upEd)
if(Ed[i].end != p){
up[Ed[i].end][0] = (tmp[0] + MOD - dp[Ed[i].end][0]) % MOD;
for(int j = 1 ; j <= K ; ++j)
up[Ed[i].end][j] = (tmp[j] + 2 * MOD - (dp[Ed[i].end][j] + dp[Ed[i].end][j - 1])) % MOD;
for(int j = K ; j ; --j)
up[Ed[i].end][j] = (up[Ed[i].end][j] + up[Ed[i].end][j - 1]) % MOD;
}
for(int i = head[x] ; i ; i = Ed[i].upEd)
if(Ed[i].end != p)
dfs2(Ed[i].end , x);
}
int main(){
#ifndef ONLINE_JUDGE
freopen("in","r",stdin);
//freopen("out","w",stdout);
#endif
N = read(); K = read();
for(int i = 1 ; i < N ; ++i){
int a = read() , b = read();
addEd(a , b); addEd(b , a);
}
S[1][1] = 1;
for(int i = 2 ; i <= K ; ++i)
for(int j = 1 ; j <= i ; ++j)
S[i][j] = (S[i - 1][j - 1] + S[i - 1][j] * j) % MOD;
dfs1(1 , 0); dfs2(1 , 0);
int fac = 1;
for(int j = 1 ; j <= K ; ++j){
fac = 1ll * fac * j % MOD;
for(int i = 1 ; i <= N ; ++i)
ans[i] = (ans[i] + 1ll * (dp[i][j] + up[i][j]) * fac * S[K][j]) % MOD;
}
for(int i = 1 ; i <= N ; ++i)
printf("%d
" , ans[i]);
return 0;
}