zoukankan      html  css  js  c++  java
  • HDU 4549 M斐波那契数列

    题目链接:HDU 4549 M斐波那契数列

    题目大意:

    题解:
    先找规律:
    (F_0=a,)
    (F_1=b,)
    (F_2=a imes b,)
    (F_3=a imes b^2,)
    (F_4=a^2 imes b^3,)
    (F_5=a^3 imes b^5,)
    (...)
    (F_n=a^{f_{n-1}} imes b^{f_n})(f_n)为斐波那契数列)
    所以题目就变成了用矩阵快速幂求斐波那契数列。
    构造矩阵:

    [left(egin{matrix} f_i \ f_{i-1} end{matrix} ight) = left(egin{matrix} 1 & 1 \ 1 & 0 end{matrix} ight) imes left(egin{matrix} f_{i-1} \ f_{i-2} end{matrix} ight) ]

    所以:

    [left(egin{matrix} f_n \ f_{n-1} end{matrix} ight) = left(egin{matrix} 1 & 1 \ 1 & 0 end{matrix} ight)^{n-1} imes left(egin{matrix} 1 \ 0 end{matrix} ight) ]

    因为结果需要对(1e9+7)取余,由费马小定理可知(a^{p-1}equiv 1(mod p))
    由此可得:

    [ans=(a^{f_{n-1}}\%mod imes b^{f_n}\%mod)\%mod ]

    [=((a^{f_{n-1}\%(mod-1)} imes a^{(mod-1)^{[f_{n-1}div (mod-1)]}})\%mod+(b^{f_n\%(mod-1)} imes b^{(mod-1)^{[f_ndiv (mod-1)]}})\%mod)\%mod ]

    [=(a^{f_{n-1}\%(mod-1)}\%mod+b^{f_n\%(mod-1)}\%mod)\%mod ]

    所以在矩阵快速幂中对(1e9+6)取余,在快速幂中对(1e9+7)取余。

    #include <cstdio>
    #include <cstring>
    #include <iostream>
    using namespace std;
    #define ll long long
    const int mod = 1e9 + 7;
    
    struct Matrix {  // 矩阵
        int row, col;
        ll num[2][2];
    };
    
    Matrix multiply(Matrix a, Matrix b) {  // 矩阵乘法
        Matrix temp;
        temp.row = a.row, temp.col = b.col;
        memset(temp.num, 0, sizeof(temp.num));
        for (int i = 0; i < a.row; ++i)
            for (int j = 0; j < b.col; ++j)
                for (int k = 0; k < a.col; ++k)
                    temp.num[i][j] = (temp.num[i][j] + a.num[i][k] * b.num[k][j]) % (mod - 1);
        return temp;
    }
    
    Matrix MatrixFastPow(Matrix base, ll k) {  // 矩阵快速幂
        Matrix ans;
        ans.row = ans.col = 2;
        ans.num[0][0] = ans.num[1][1] = 1;
        ans.num[0][1] = ans.num[1][0] = 0;
        while (k) {
            if (k & 1) ans = multiply(ans, base);
            base = multiply(base, base);
            k >>= 1;
        }
        return ans;
    }
    
    ll fastPow(ll n, ll k) {  // 快速幂
        ll ans = 1;
        while (k) {
            if (k & 1) ans = ans * n % mod;
            n = n * n % mod;
            k >>= 1;
        }
        return ans;
    }
    
    int main() {
        ll a, b, n;
        Matrix base;
        base.row = base.col = 2;
        base.num[0][0] = base.num[0][1] = base.num[1][0] = 1;
        base.num[1][1] = 0;
        while (~scanf("%lld%lld%lld", &a, &b, &n)) {
            if (!n) {
                printf("%lld
    ", a);
            } else {
                Matrix ans = MatrixFastPow(base, n - 1);
                printf("%lld
    ", fastPow(a, ans.num[1][0]) * fastPow(b, ans.num[0][0]) % mod);
            }
        }
        return 0;
    }
    
  • 相关阅读:
    杜教筛学习笔记
    Dirichlet 卷积学习笔记
    洛谷 [POI2007]BIU-Offices 解题报告
    NOIP 2018 游记
    洛谷 P4964 绫小路的特别考试 解题报告
    洛谷 P4597 序列sequence 解题报告
    洛谷 P2757 [国家集训队]等差子序列 解题报告
    对答案 解题报告
    multimap-find
    multimap-insert
  • 原文地址:https://www.cnblogs.com/IzumiSagiri/p/14321940.html
Copyright © 2011-2022 走看看