1、基本思想
归并排序(MERGE-SORT)是利用归并的思想实现的排序方法,该算法采用经典的分治(divide-and-conquer)策略(分治法将问题分(divide)成一些小的问题然后递归求解,而治(conquer)的阶段则将分的阶段得到的各答案"修补"在一起,即分而治之)。
2、图解
1)归并排序流程
2)合并两个有序数组流程
3)动图演示
3、python代码演示
def merge(arr, l, m, r): n1 = m - l + 1 n2 = r- m # 创建临时数组 L = [0] * (n1) R = [0] * (n2) # 拷贝数据到临时数组 arrays L[] 和 R[] for i in range(0 , n1): L[i] = arr[l + i] for j in range(0 , n2): R[j] = arr[m + 1 + j] # 归并临时数组到 arr[l..r] i = 0 # 初始化第一个子数组的索引 j = 0 # 初始化第二个子数组的索引 k = l # 初始归并子数组的索引 while i < n1 and j < n2 : if L[i] <= R[j]: arr[k] = L[i] i += 1 else: arr[k] = R[j] j += 1 k += 1 # 拷贝 L[] 的保留元素 while i < n1: arr[k] = L[i] i += 1 k += 1 # 拷贝 R[] 的保留元素 while j < n2: arr[k] = R[j] j += 1 k += 1 def mergeSort(arr,l,r): if l < r: m = int((l+(r-1))/2) mergeSort(arr, l, m) mergeSort(arr, m+1, r) merge(arr, l, m, r) arr = [12, 11, 13, 5, 6, 7] n = len(arr) print ("给定的数组") for i in range(n): print ("%d" %arr[i]) mergeSort(arr,0,n-1) print (" 排序后的数组") for i in range(n): print ("%d" %arr[i]) --------------------------------------------- 输出结果: 给定的数组 12 11 13 5 6 7 排序后的数组 5 6 7 11 12 13
4、复杂度
时间复杂度:O(nlogn)
空间复杂度:O(N),归并排序需要一个与原数组相同长度的数组做辅助来排序