zoukankan      html  css  js  c++  java
  • 鱼书学习笔记:利用numpy实现三层神经网络

    全局代码:

    def init_network():
        network = {}
        network['W1'] = np.array([[0.1, 0.3, 0.5], [0.2, 0.4, 0.6]])
        network['b1'] = np.array([0.1, 0.2, 0.3])
        network['W2'] = np.array([[0.1, 0.4], [0.2, 0.5], [0.3, 0.6]])
        network['b2'] = np.array([0.1, 0.2])
        network['W3'] = np.array([[0.1, 0.3], [0.2, 0.4]])
        netowrk['b3'] = np.array([0.1, 0.2])
    
        return network
    
    def forward(network, x):
        W1, W2, W3 = network['W1'], network['W2'], network['W3']
        b1, b2, b3 = network['b1'], network['b2'], network['b3']
    
        a1 = np.dot(x, W1) + b1
        z1 = sigmoid(a1)
        a2 = np.dot(z1, W2) + b2
        z2 = sigmoid(a2)
        y = identity_function(a3)
    
        return y
    
    network = init_network()
    x = np.array([1.0, 0.5])
    y = forward(network, x)
    print(y) # [0.31682708 0.69627909]

    其中,sigmoid()和identity_function()都是激活函数,代码如下:

    def identity_function(x)
        return x
    def sigmoid(x):
        return 1 / (1 + np.exp(-x))

     上面神经网络相关代码包含两部分:init_network()和forward(),init_network()函数会进行权重和偏置的初始化,并将它们保存在字典变量network中。这个字典变量network中保存了每一层所需的参数(权重和偏置)。forward()函数中则封装了将输入信号转换为输出信号的处理过程

  • 相关阅读:
    Delphi 中多线程同步的一些处理方法
    delphi 讲的比较详细的多线程
    Delphi MSComm 实时串口通讯
    Delphi多线程数据库查询(ADO)
    常用学习链接收藏
    Linux目录及常用命令
    DEBUG和INFO的使用
    git命令
    9.9 接口与工厂
    9.4 Java中的多继承
  • 原文地址:https://www.cnblogs.com/J14nWe1/p/14558016.html
Copyright © 2011-2022 走看看