zoukankan      html  css  js  c++  java
  • 卷积神经网络-CNN

    The Basic Conception:

     

    Case Study:

    LeNet-5

    AlexNet

    To be mensionend:

    1.archtecture picture above is crop from krizhevsky's paper, its firster layer which is 224*224 that actually can't output 55*55 volume, so we make the input images as 227*227*3

     2.now we no longer use the norm layer because it actully do nothing to make provement

     ZFNet

    VGGNet

     

     

    Note:

    1. different from AlexNet using so many conv layers with large shape, VGGNet only use 3*3 conv layer

    2. as the spatial size is decresing, the number of parameters is increasing.

    3. most memory is in early CONV, and most params is in late FC

    GoogLeNet

     

    ResNet

     

    AlphaGo

     Summary

     Reference:

    CNN course

    [1]CS231n Winter 2016: Lecture 7: Convolutional Neural Networks

    https://www.youtube.com/watch?v=LxfUGhug-iQ

    CNN case

    [2]ImageNet Classification with Deep Convolutional Neural Networks

    http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf

    [3]MSRA - Deep residual learning

    https://www.youtube.com/watch?v=1PGLj-uKT1w

    Understand CNN using excel

    [4]Architecture of Convolutional Neural Networks (CNNs) demystified

    https://www.analyticsvidhya.com/blog/2017/06/architecture-of-convolutional-neural-networks-simplified-demystified/

  • 相关阅读:
    JAVA周二学习总结
    2019春总结作业
    第十二周作业
    第十一周作业
    第十周作业
    第九周作业
    第八周作业
    第七周作业
    第六周作业
    第四周课程总结&试验报告(二)
  • 原文地址:https://www.cnblogs.com/J14nWe1/p/14653445.html
Copyright © 2011-2022 走看看