zoukankan      html  css  js  c++  java
  • 卷积神经网络-CNN

    The Basic Conception:

     

    Case Study:

    LeNet-5

    AlexNet

    To be mensionend:

    1.archtecture picture above is crop from krizhevsky's paper, its firster layer which is 224*224 that actually can't output 55*55 volume, so we make the input images as 227*227*3

     2.now we no longer use the norm layer because it actully do nothing to make provement

     ZFNet

    VGGNet

     

     

    Note:

    1. different from AlexNet using so many conv layers with large shape, VGGNet only use 3*3 conv layer

    2. as the spatial size is decresing, the number of parameters is increasing.

    3. most memory is in early CONV, and most params is in late FC

    GoogLeNet

     

    ResNet

     

    AlphaGo

     Summary

     Reference:

    CNN course

    [1]CS231n Winter 2016: Lecture 7: Convolutional Neural Networks

    https://www.youtube.com/watch?v=LxfUGhug-iQ

    CNN case

    [2]ImageNet Classification with Deep Convolutional Neural Networks

    http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf

    [3]MSRA - Deep residual learning

    https://www.youtube.com/watch?v=1PGLj-uKT1w

    Understand CNN using excel

    [4]Architecture of Convolutional Neural Networks (CNNs) demystified

    https://www.analyticsvidhya.com/blog/2017/06/architecture-of-convolutional-neural-networks-simplified-demystified/

  • 相关阅读:
    Git的初步学习
    Git的初步学习
    微信小程序我的界面
    微信小程序我的界面
    Day2:html和css
    Day2:html和css
    Day1:html和css
    Day1:html和css
    Java之JDK7的新语法探索
    Java之JDK7的新语法探索
  • 原文地址:https://www.cnblogs.com/J14nWe1/p/14653445.html
Copyright © 2011-2022 走看看