zoukankan      html  css  js  c++  java
  • 四、Kafka API 实战

    四 Kafka API 实战
      4.1 环境准备
            1)在 eclipse 中创建一个 java 工程
            2)在工程的根目录创建一个 lib 文件夹
            3)解压 kafka 安装包,将安装包 libs 目录下的 jar 包拷贝到工程的 lib 目录下,并 build path。
             4)启动 zk 和 kafka 集群,在 kafka 集群中打开一个消费者
               [hadoop@node01 kafka]$ bin/kafka-console-consumer.sh --zookeeper node01:2181 --topic first
            注:如果使用 maven 创建工程添加如下依赖:
               <dependency>
                 <groupId>org.apache.kafka</groupId>
                <artifactId>kafka-clients</artifactId>
                <version>2.0.0</version>
              </dependency>
      4.2 Kafka 生产者 Java API
      4.2.1 创建生产者(过时的 API)
     
        package cn.bw.kafka;
        import java.util.Properties;
        import kafka.javaapi.producer.Producer;
        import kafka.producer.KeyedMessage;
         import kafka.producer.ProducerConfig;
         public class OldProducer {
           @SuppressWarnings("deprecation")
           public static void main(String[] args) {
              Properties properties = new Properties();
              properties.put("metadata.broker.list", "hadoop102:9092");
              properties.put("request.required.acks", "1");
              properties.put("serializer.class", "kafka.serializer.StringEncoder");
              Producer<Integer, String> producer = new Producer<Integer,String>(new ProducerConfig(properties));
              KeyedMessage<Integer, String> message = new KeyedMessage<Integer, String>("first", "hello world");
              producer.send(message );
          }
          }
    4.2.2 创建生产者(新 API)
       package cn.bw.kafka; import java.util.Properties;
       import org.apache.kafka.clients.producer.KafkaProducer;
       import org.apache.kafka.clients.producer.Producer;
       import org.apache.kafka.clients.producer.ProducerRecord;
       public class NewProducer {
          public static void main(String[] args) {
            Properties props = new Properties();
             // Kafka 服务端的主机名和端口号
             props.put("bootstrap.servers", "hadoop103:9092");
             // 等待所有副本节点的应答
            props.put("acks", "all");
            // 消息发送最大尝试次数
             props.put("retries", 0);
            // 一批消息处理大小
            props.put("batch.size", 16384);
            // 请求延时
            props.put("linger.ms", 1);
            // 发送缓存区内存大小
            props.put("buffer.memory", 33554432);
             // key 序列化
            props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
            // value 序列化
            props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
            Producer<String, String> producer = new KafkaProducer<>(props);
            for (int i = 0; i < 50; i++) {
              producer.send(new ProducerRecord<String, String>("first", Integer.toString(i), "hello world-" + i));
             }producer.close();
           }
          }
    4.2.3 创建生产者带回调函数(新 API)
     
        package cn.bw.kafka; import java.util.Properties;
        import org.apache.kafka.clients.producer.Callback;
        import org.apache.kafka.clients.producer.KafkaProducer;
        import org.apache.kafka.clients.producer.ProducerRecord;
        import org.apache.kafka.clients.producer.RecordMetadata;
        public class CallBackProducer {
            public static void main(String[] args) {
                Properties props = new Properties();
                // Kafka 服务端的主机名和端口号
                 props.put("bootstrap.servers", "hadoop103:9092");
                // 等待所有副本节点的应答
                props.put("acks", "all");
                // 消息发送最大尝试次数
                props.put("retries", 0);
                // 一批消息处理大小
                props.put("batch.size", 16384);
                // 增加服务端请求延时
                props.put("linger.ms", 1);
                // 发送缓存区内存大小
                props.put("buffer.memory", 33554432);
                // key 序列化
                props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
                // value 序列化
                props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
                KafkaProducer<String, String> kafkaProducer = new KafkaProducer<>(props);
                for (int i = 0; i < 50; i++) {
                    kafkaProducer.send(new ProducerRecord<String, String>("first", "hello" + i), new Callback() {
                  @Override
                  public void onCompletion(RecordMetadata metadata, Exception exception) {
                    if (metadata != null) {
                      System.err.println(metadata.partition() + "---" + metadata.offset());
                    }
                  }
                });
                  }kafkaProducer.close();
                }
               }
    4.2.3 自定义分区生产者
    0)需求:将所有数据存储到 topic 的第 0 号分区上
    1)定义一个类实现 Partitioner 接口,重写里面的方法(过时 API)
         package cn.bw.kafka;
        import java.util.Map;
        import kafka.producer.Partitioner;
        public class CustomPartitioner implements Partitioner {
        public CustomPartitioner() {
          super();
        }
        @Override
        public int partition(Object key, int numPartitions) {
          // 控制分区 return 0;
        }
      }
    2)自定义分区(新 API)
          package cn.bw.kafka; import java.util.Map;
          import org.apache.kafka.clients.producer.Partitioner;
          import org.apache.kafka.common.Cluster;
          public class CustomPartitioner implements Partitioner {
          @Override
          public void configure(Map<String, ?> configs) {
          }
          @Override
          public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {
            // 控制分区
            return 0;
          }
          @Override
          public void close() {
          }
        }
    3)在代码中调用 package com.hadoop.kafka;
             import java.util.Properties;
             import org.apache.kafka.clients.producer.KafkaProducer;
             import org.apache.kafka.clients.producer.Producer;
             import org.apache.kafka.clients.producer.ProducerRecord;
             public class PartitionerProducer public static void main(String[] args) {
                   Properties props = new Properties();
                   // Kafka 服务端的主机名和端口号
                  props.put("bootstrap.servers", "hadoop103:9092");
                  // 等待所有副本节点的应答
                  props.put("acks", "all");
                  // 消息发送最大尝试次数
                  props.put("retries", 0);
                  // 一批消息处理大小
                  props.put("batch.size", 16384);
                  // 增加服务端请求延时
                  props.put("linger.ms", 1);
                  // 发送缓存区内存大小
                  props.put("buffer.memory", 33554432);
                  // key 序列化
                  props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
                  // value 序列化
                  props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
                  // 自定义分区
                  props.put("partitioner.class", "cn.bw.kafka.CustomPartitioner");
                  Producer<String, String> producer = new KafkaProducer<>(props);
                  producer.send(new ProducerRecord<String, String>("first", "1", "hadoop")); producer.close();
              }
            }
    4)测试
      (1)在 node01 上监控/bd/kafka/logs/目录下 first 主题 3 个分区的 log 日志动态变化情况
            [hadoop@node01 first-0]$ tail -f 00000000000000000000.log
            [hadoop@node01 first-1]$ tail -f 00000000000000000000.log
            [hadoop@node01 first-2]$ tail -f 00000000000000000000.log
      (2)发现数据都存储到指定的分区了。
    4.3 Kafka 消费者 Java API
        0)在控制台创建发送者
            [hadoop@node01 kafka]$ bin/kafka-console-producer.sh --broker-list node01:9092 --topic first
            >hello world
        1)创建消费者(过时 API)
            package cn.bw.kafka.consumeimport java.util.HashMap;
            import java.util.List; import java.util.Map;
            import java.util.Properties;
            import kafka.consumer.Consumerimport kafka.consumer.ConsumerConfig;
            import kafka.consumer.ConsumerIterator;
            import kafka.consumer.KafkaStream;
            import kafka.javaapi.consumer.ConsumerConnector;
            public class CustomConsumer {
              @SuppressWarnings("deprecation")
              public static void main(String[] args) {
                  Properties properties = new Properties();
                  properties.put("zookeeper.connect", "hadoop102:2181");
                  properties.put("group.id", "g1");
                  properties.put("zookeeper.session.timeout.ms", "500");
                  properties.put("zookeeper.sync.time.ms", "250");
                  properties.put("auto.commit.interval.ms", "1000");
                  // 创建消费者连接器
                  ConsumerConnector consumer = Consumer.createJavaConsumerConnector(new ConsumerConfig(properties));
                  HashMap<String, Integer> topicCount = new HashMap<>();
                  topicCount.put("first", 1);
                  Map<String, List<KafkaStream<byte[], byte[]>>> consumerMap = consumer.createMessageStreams(topicCount);
                  KafkaStream<byte[], byte[]> stream = consumerMap.get("first").get(0);
                  ConsumerIterator<byte[], byte[]> it = stream.iterator();
              while (it.hasNext()) {
                  System.out.println(new String(it.next().message()));
                }
            }
          }
    2)官方提供案例(自动维护消费情况)(新 API)
        package cn.bw.kafka.consumeimport java.util.Arrays;
        import java.util.Properties;
        import org.apache.kafka.clients.consumer.ConsumerRecord;
        import org.apache.kafka.clients.consumer.ConsumerRecords;
        import org.apache.kafka.clients.consumer.KafkaConsumer;
        public class CustomNewConsumer public static void main(String[] args) {
              Properties props = new Properties();
              // 定义 kakfa 服务的地址,不需要将所有 broker 指定上
              props.put("bootstrap.servers", "node01:9092");
              // 制定
              consumer group props.put("group.id", "test");
              // 是否自动确认
              offset props.put("enable.auto.commit", "true");
              // 自动确认 offset 的时间间隔
              props.put("auto.commit.interval.ms", "1000");
              // key 的序列化类
              props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
              // value 的序列化类
              props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
              // 定义 consumer
              KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
              // 消费者订阅的 topic, 可同时订阅多个
              consumer.subscribe(Arrays.asList("first", "second","third"));
            while (true) {
              // 读取数据,读取超时时间为 100ms
              ConsumerRecords<String, String> records = consumer.poll(100);
              for (ConsumerRecord<String, String> record : records)
                  System.out.printf("offset = %d, key = %s, value = %s%n", record.offset(), record.key(), record.value());
                }
              }
            }
  • 相关阅读:
    Hibernate一对多OnetoMany
    80端口被占用 PID = 4解决办法
    Devexpress Barmanager设置
    通过C# 打开一个应用程序
    C#DataTable操作
    C# Winform 双屏显示
    Dev gridview 调整字体大小
    在静态页面html中跳转传值
    js 求两个日期之间相差天数
    jQuery 知识积累
  • 原文地址:https://www.cnblogs.com/JBLi/p/11551194.html
Copyright © 2011-2022 走看看