zoukankan      html  css  js  c++  java
  • CF1450F The Struggling Contestant

    Description

    To help those contestants who struggle a lot in contests, the headquarters of Codeforces are planning to introduce Division 5. In this new division, the tags of all problems will be announced prior to the round to help the contestants.

    The contest consists of $ n $ problems, where the tag of the $ i $ -th problem is denoted by an integer $ a_i $ .

    You want to AK (solve all problems). To do that, you must solve the problems in some order. To make the contest funnier, you created extra limitations on yourself. You do not want to solve two problems consecutively with the same tag since it is boring. Also, you are afraid of big jumps in difficulties while solving them, so you want to minimize the number of times that you solve two problems consecutively that are not adjacent in the contest order.

    Formally, your solve order can be described by a permutation $ p $ of length $ n $ . The cost of a permutation is defined as the number of indices $ i $ ( $ 1leq i< n$ ) where $ |p_{i+1}-p_i|>1 $ . You have the requirement that $ a_{p_i} e a_{p_{i+1}} $ for all $ 1leq i< n$ .

    You want to know the minimum possible cost of permutation that satisfies the requirement. If no permutations meet this requirement, you should report about it.

    Solution

    a数组中相邻的相同数字是不合法的,需要改变它们两个数的相对位置

    若一共有$k$对相邻的相同数,那么将数组分成$k+1$段,只关注每个段的左右端点的排列是否合法

    记$f(x)$为数$x$作为端点的次数,一个区间左右端点相同时仍计数两次

    存在可行解的条件为$max{f(x)} leq k+2$

    证明不想打,搬运官方题解https://codeforces.com/blog/entry/85348

    最终答案为$k+max{ 0,max{ f(x)}-k-2}$

    #include<iostream>
    #include<cstring>
    #include<cstdio>
    #include<cmath>
    using namespace std;
    int T,n,a[100005],f[100005],k,vst[100005],max1,max2;
    inline int read()
    {
        int f=1,w=0;
        char ch=0;
        while(ch<'0'||ch>'9'){if(ch=='-') f=-1;ch=getchar();}
        while(ch>='0'&&ch<='9') w=(w<<1)+(w<<3)+ch-'0',ch=getchar();
        return f*w;
    }
    int main()
    {
        T=read();
        for(;T;T--)
        {
            memset(f,0,sizeof(f)),memset(vst,0,sizeof(vst));
            n=read(),k=max1=max2=0;
            for(int i=1;i<=n;i++)
            {
                a[i]=read();
                vst[a[i]]++;
                if(i!=1&&a[i]==a[i-1])
                {
                    ++k;
                    f[a[i]]+=2;
                }
            }
            f[a[1]]++,f[a[n]]++;
            for(int i=1;i<=n;i++) max1=max(max1,vst[i]),max2=max(max2,f[i]);
            if(max1*2>n+1) puts("-1");
            else printf("%d
    ",k+max(0,max2-k-2));
        }
        return 0;
    }
    The Struggling Contestant
  • 相关阅读:
    二分多重匹配(HDU5093)
    2-sat(and,or,xor)poj3678
    某个点到其他点的曼哈顿距离之和最小(HDU4311)
    第k最短路A*启发式搜索
    求树的直径和中心(ZOJ3820)
    并查集hdu4424
    map容器结构体离散化
    二维坐标系极角排序的应用(POJ1696)
    【进阶3-3期】深度广度解析 call 和 apply 原理、使用场景及实现(转)
    判断js数据类型的四种方法,以及各自的优缺点(转)
  • 原文地址:https://www.cnblogs.com/JDFZ-ZZ/p/14153091.html
Copyright © 2011-2022 走看看