zoukankan      html  css  js  c++  java
  • CF603D Ruminations on Ruminants

    Description

    Kevin Sun is ruminating on the origin of cows while standing at the origin of the Cartesian plane. He notices $ n $ lines $ l_1 , l_2 , cdots ,l_n$ on the plane, each representable by an equation of the form $ ax+by=c $ . He also observes that no two lines are parallel and that no three lines pass through the same point.

    For each triple $ (i,j,k) $ such that $ 1 leq i < j < k leq n $ , Kevin considers the triangle formed by the three lines $l_i , l_j , l_k$ . He calls a triangle original if the circumcircle of that triangle passes through the origin. Since Kevin believes that the circles of bovine life are tied directly to such triangles, he wants to know the number of original triangles formed by unordered triples of distinct lines.

    Recall that the circumcircle of a triangle is the circle which passes through all the vertices of that triangle.

    Solution

    考虑西姆森定理:若一点在三角形三边所在直线上的射影共线,则该点在此三角形的外接圆上

    枚举原点在每一条轴线上的投影,计算其与其它点的斜率,与其同斜率的点中任意选两个就可以组成符合要求的三角形

    重合的点需要特判

    #include<algorithm>
    #include<iostream>
    #include<cstdio>
    #include<cmath>
    using namespace std;
    int n;
    double x[2005],y[2005],k[2005];
    const double eps=1e-12;
    long long ans;
    inline int read(){
        int w=0,f=1;
        char ch=0;
        while(ch<'0'||ch>'9'){if(ch=='-') f=-1; ch=getchar();}
        while(ch>='0'&&ch<='9')w=(w<<1)+(w<<3)+ch-'0',ch=getchar();
        return w*f;
    }
    int main(){
        n=read();
        for(int i=1;i<=n;i++){
            double a=read(),b=read(),c=read();
            x[i]=a*c/(a*a+b*b),y[i]=b*c/(a*a+b*b);
        }
        for(int i=1;i<=n-2;i++){
            int tot=0,sum=0,pos=1;
            for(int j=i+1;j<=n;j++)
                if(x[i]==x[j]&&y[i]==y[j])++sum;
                else if(x[i]!=x[j])k[++tot]=(y[j]-y[i])/(x[j]-x[i]);
                else k[++tot]=1e9;
            sort(k+1,k+tot+1);
            for(int j=1;j<=sum;j++)ans+=n-i-j;
            for(int j=1;j<=tot;j++){
                while(abs(k[pos]-k[j])>eps)++pos;
                ans+=j-pos;
            }
        }
        printf("%I64d
    ",ans);
        return 0;
    }
    Ruminations on Ruminants
  • 相关阅读:
    Sql Server 收缩日志文件原理及always on 下的实践
    SQL Agent服务无法启动如何破
    Sql Server Always On 读写分离配置方法
    SQL SERVER 9003错误解决方法 只适用于SQL2000
    SQL Server 数据库分离与附加
    SQL SERVER 的模糊查询 LIKE
    sqlserver 时间格式函数详细
    浅谈SQL Server中的三种物理连接操作
    谈一谈SQL Server中的执行计划缓存(下)
    asp.net获取当前系统的时间
  • 原文地址:https://www.cnblogs.com/JDFZ-ZZ/p/14264352.html
Copyright © 2011-2022 走看看