zoukankan      html  css  js  c++  java
  • 【bzoj1571/Usaco2009 Open】滑雪课Ski——dp

    Description

    Farmer John 想要带着 Bessie 一起在科罗拉多州一起滑雪。很不幸,Bessie滑雪技术并不精湛。 Bessie了解到,在滑雪场里,每天会提供S(0<=S<=100)门滑雪课。第i节课始于M_i(1<=M_i<=10000),上的时间为L_i(1<=L_i<=10000)。上完第i节课后,Bessie的滑雪能力会变成A_i(1<=A_i<=100). 注意:这个能力是绝对的,不是能力的增长值。 Bessie买了一张地图,地图上显示了N(1 <= N <= 10,000)个可供滑雪的斜坡,从第i个斜坡的顶端滑至底部所需的时长D_i(1<=D_i<=10000),以及每个斜坡所需要的滑雪能力C_i(1<=C_i<=100),以保证滑雪的安全性。Bessie的能力必须大于等于这个等级,以使得她能够安全滑下。 Bessie可以用她的时间来滑雪,上课,或者美美地喝上一杯可可汁,但是她必须在T(1<=T<=10000)时刻离开滑雪场。这意味着她必须在T时刻之前完成最后一次滑雪。 求Bessie在实现内最多可以完成多少次滑雪。这一天开始的时候,她的滑雪能力为1.

    Input

    第1行:3个用空格隔开的整数:T, S, N。

    第2~S+1行:第i+1行用3个空格隔开的整数来描述编号为i的滑雪课:M_i,L_i,A_i。

    第S+2~S+N+1行:

    第S+i+1行用2个空格隔开的整数来描述第i个滑雪坡:C_i,D_i。

    Output

    一个整数,表示Bessie在时间限制内最多可以完成多少次滑雪。

    Sample Input

    10 1 2
    3 2 5
    4 1
    1 3

    Sample Output

    6

    HINT

    滑第二个滑雪坡1次,然后上课,接着滑5次第一个滑雪坡。


    定义f[i][j]为时间i内能力值为j的最多滑雪次数,g[i]=max(f[i][j]),那么状态转移会有三种情况:

    1.什么事都不干:f[i][j]=f[i-1][j]

    2.上课->节省时间所以选择最后一次使得能力值为j的课:f[i][j]=g[pp[i][j]]

    3.滑雪->一个坡可以划多次因此一定选择时间最短的:f[i][j]=f[i-po[j]]+1,其中po[j]为预处理的所需能力值<=j的时间最短斜坡。

    最后答案为g[t]。

    代码:

     1 #include<cstdio>
     2 #include<cstring>
     3 #include<algorithm>
     4 #define mem(a,p) memset(a,p,sizeof(a))
     5 using std::sort;
     6 using std::max;
     7 using std::min;
     8 const int N=1e4+10;
     9 int tt[105],pp[N][105];
    10 struct node{int m,l,a;}e[N];
    11 int read(){
    12     int ans=0,f=1;char c=getchar();
    13     while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
    14     while(c>='0'&&c<='9'){ans=ans*10+c-48;c=getchar();}
    15     return ans*f;
    16 }
    17 bool cmp(node a,node b){return a.m+a.l<b.m+b.l;}
    18 int f[N][105],g[N];
    19 int main(){
    20     mem(tt,127);mem(f,128);
    21     int t=read(),s=read(),n=read();
    22     for(int i=1,a,b,c;i<=s;i++){
    23         a=read();b=read();c=read();
    24         e[i]=(node){a,b,c};
    25     }
    26     sort(e+1,e+1+s,cmp);
    27     for(int i=1;i<=s;i++){
    28         int x=e[i].l+e[i].m;
    29         if(x>=t)break;
    30         pp[x][e[i].a]=e[i].m;
    31     }
    32     for(int i=1,a,b;i<=n;i++){
    33         a=read();b=read();
    34         for(int j=a;j<=100;j++)tt[j]=min(tt[j],b);
    35     }
    36     f[0][1]=0;
    37     for(int i=1;i<=t;i++){
    38         for(int j=1;j<=100;j++){
    39             f[i][j]=f[i-1][j];
    40             if(pp[i][j])f[i][j]=max(f[i][j],g[pp[i][j]]);
    41             if(i>=tt[j])f[i][j]=max(f[i][j],f[i-tt[j]][j]+1);
    42             g[i]=max(g[i],f[i][j]);
    43         }
    44     }
    45     printf("%d
    ",g[t]);
    46     return 0;
    47 }
    48 
    bzoj1571
  • 相关阅读:
    自动化运维
    rabbitmq常见问题
    常见的排序算法
    rabbitmq
    redis-其他应用
    redis之缓存穿透、雪崩、击穿
    redis-cluster(集群)
    redis -sentinel(哨兵)
    redis持久化
    redis简介
  • 原文地址:https://www.cnblogs.com/JKAI/p/7665955.html
Copyright © 2011-2022 走看看