zoukankan      html  css  js  c++  java
  • BZOJ 1225: [HNOI2001] 求正整数( dfs + 高精度 )

    15 < log250000 < 16, 所以不会选超过16个质数, 然后暴力去跑dfs, 高精度计算最后答案..

    ------------------------------------------------------------------------------

    #include<cstdio>
    #include<algorithm>
    #include<cstring>
    #include<cmath>
     
    using namespace std;
     
    const int maxn = 50009;
    const int n = 16;
    const int p[n] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53};
     
    int N, ans[n], g[n], ansn;
    double cur = 1e30;
     
    void dfs(int x, int lim, double res, int cnt) {
    if(res > cur) return;
    if(cnt == N) {
    if(res < cur) {
    ansn = x;
    for(int i = 0; i < x; i++) ans[i] = g[i];
    cur = res;
    }
    } else {
    if(x == n) return;
    for(int i = 0; i <= lim; i++) if(cnt * (i + 1) <= N) {
    g[x] = i;
    dfs(x + 1, i, res + i * log(p[x]), cnt * (i + 1));
    }
    }
    }
     
    struct Int {
    static const int base = 10000;
    static const int width = 4;
    static const int maxn = 1000;
    int s[maxn], n;
    Int() {
    n = 0;
    memset(s, 0, sizeof s);
    }
    Int(int x) {
    n = 0;
    for(; x; x /= base) s[n++] = x % base;
    }
    Int operator = (const Int &o) {
    n = o.n;
    memcpy(s, o.s, sizeof(int) * n);
    return *this;
    }
    Int operator * (const Int &o) const {
    Int ret; ret.n = n + o.n - 1;
    for(int i = 0; i < n; i++)
    for(int j = 0; j < o.n; j++) 
    ret.s[i + j] += s[i] * o.s[j];
    for(int i = 0; i < ret.n; i++) if(ret.s[i] >= base) {
    ret.s[i + 1] += ret.s[i] / base;
    ret.s[i] %= base;
    }
    for(int &i = ret.n; ret.s[i]; i++) if(ret.s[i] >= base) {
    ret.s[i + 1] += ret.s[i] / base;
    ret.s[i] %= base;
    }
    return ret;
    }
    void write() {
    int buf[width], c;
    for(int i = n; i--; ) {
    c = 0;
    for(int t = s[i]; t; t /= 10) buf[c++] = t % 10;
    if(i != n - 1)
    for(int j = width - c; j--; ) putchar('0');
    while(c--) putchar(buf[c] + '0');
    }
    puts("");
    }
    };
     
    int main() {
    scanf("%d", &N);
    dfs(0, N - 1, 0, 1);
    Int res = 1;
    for(int i = 0; i < ansn; i++) {
    Int _p = p[i];
    for(int j = 0; j < ans[i]; j++)
    res = res * _p;
    }
    res.write();
    return 0;
    }

    ------------------------------------------------------------------------------

    1225: [HNOI2001] 求正整数

    Time Limit: 10 Sec  Memory Limit: 162 MB
    Submit: 576  Solved: 232
    [Submit][Status][Discuss]

    Description

    对于任意输入的正整数n,请编程求出具有n个不同因子的最小正整数m。例如:n=4,则m=6,因为6有4个不同整数因子1,2,3,6;而且是最小的有4个因子的整数。

    Input

    n(1≤n≤50000)

    Output

    m

    Sample Input

    4

    Sample Output

    6

    HINT

    Source

  • 相关阅读:
    一个datagrid中嵌入checkBox典型的例子
    堆排序算法
    堆排序(利用最大堆)
    动态代理模式的实现
    [转载]C#如何实现对外部程序的动态调用
    9.Jmeter 多个threadgroup 中的配置元件会一次性进行初始化
    二十七。
    三十。接口2
    三十三。日志
    大道至简读后感
  • 原文地址:https://www.cnblogs.com/JSZX11556/p/4915348.html
Copyright © 2011-2022 走看看