zoukankan      html  css  js  c++  java
  • BZOJ 2780: [Spoj]8093 Sevenk Love Oimaster( 后缀数组 + 二分 + RMQ + 树状数组 )

    全部串起来做SA, 在按字典序排序的后缀中, 包含每个询问串必定是1段连续的区间, 对每个询问串s二分+RMQ求出包含s的区间. 然后就是求区间的不同的数的个数(经典问题), sort queries + BIT 就行了.时间复杂度O(N log N). 速度垫底了QAQ 你们都会SAM。。。。

    ----------------------------------------------------------------------

    #include<cmath>
    #include<cstdio>
    #include<cctype>
    #include<cstring>
    #include<algorithm>
     
    using namespace std;
     

    #define b(i) (1 << (i))

     
    const int maxL = 540009;
    const int maxQ = 60009;
     
    char S[maxL], str[maxL];
    int N, n, q, Id[maxL], qL[maxQ], qR[maxQ], L[maxQ], R[maxQ];
    int Rank[maxL], Height[maxL], Sa[maxL], cnt[maxL];
    int RMQ[20][maxL], r[maxQ], ans[maxQ];
     
    void Build() {
    int m = 'z' + 1, *x = Rank, *y = Height;
    for(int i = 0; i < m; i++) cnt[i] = 0;
    for(int i = 0; i < N; i++) cnt[x[i] = S[i]]++;
    for(int i = 1; i < m; i++) cnt[i] += cnt[i - 1];
    for(int i = N; i--; ) Sa[--cnt[x[i]]] = i;
    for(int k = 1, p = 0; k <= N; k <<= 1, p = 0) {
    for(int i = N - k; i < N; i++) y[p++] = i;
    for(int i = 0; i < N; i++)
    if(Sa[i] >= k) y[p++] = Sa[i] - k;
    for(int i = 0; i < m; i++) cnt[i] = 0;
    for(int i = 0; i < N; i++) cnt[x[y[i]]]++;
    for(int i = 1; i < m; i++) cnt[i] += cnt[i - 1];
    for(int i = N; i--; ) Sa[--cnt[x[y[i]]]] = y[i];
    swap(x, y);
    x[Sa[0]] = 0;
    p = 1;
    for(int i = 1; i < N; i++) {
    if(y[Sa[i]] != y[Sa[i - 1]] || y[Sa[i] + k] != y[Sa[i - 1] + k]) p++;
    x[Sa[i]] = p - 1;
    }
    if((m = p) >= N) break;
    }
    for(int i = 0; i < N; i++) Rank[Sa[i]] = i;
    Height[0] = Height[N] = 0;
    for(int i = 0, h = 0; i < N; i++) if(Rank[i]) {
    if(h) h--;
    while(S[i + h] == S[Sa[Rank[i] - 1] + h]) h++;
    Height[Rank[i]] = h;
    }
    }
     
    void Init_RMQ() {
    for(int i = 0; i < N; i++)
    RMQ[0][i] = Height[i];
    for(int i = 1; b(i) <= N; i++)
    for(int j = 0; j + b(i) <= N; j++)
    RMQ[i][j] = min(RMQ[i - 1][j], RMQ[i - 1][j + b(i - 1)]);
    }
     
    inline int LCP(int l, int r) {
    int t = log2(r - l + 1);
    return min(RMQ[t][l], RMQ[t][r - b(t) + 1]);
    }
     
    void calc(int &L, int &R, int p, int len) {
    int _l, _r;
    p = Rank[p];
    if(Height[p] >= len) {
    _l = 0, _r = p - 1;
    while(_l <= _r) {
    int m = (_l + _r) >> 1;
    if(LCP(m + 1, p) >= len)
    L = m, _r = m - 1;
    else
    _l = m + 1;
    }
    } else
    L = p;
    if(Height[p + 1] >= len) {
    _l = p + 1, _r = N - 1;
    while(_l <= _r) {
    int m = (_l + _r) >> 1;
    if(LCP(p + 1, m) >= len)
    R = m, _l = m + 1;
    else
    _r = m - 1;
    }
    } else
    R = p;
    }
     
    struct Link {
    int p;
    Link* n;
    } pool[maxL], *pt = pool, *H[maxL];
     
    inline void AddL(int v, int p) {
    pt->p = p, pt->n = H[v], H[v] = pt++;
    }
     
    int B[maxL];
     
    inline void Modify(int p, int v) {
    if(!p) return;
    for(; p <= N; p += p & -p) B[p] += v;
    }
     
    inline int Sum(int p) {
    int ret = 0;
    for(; p; p -= p & -p) ret += B[p];
    return ret;
    }
     
    inline bool Cmp(const int &l, const int &r) {
    return qL[l] < qL[r];
    }
     
    void Work() {
    Build();
    Init_RMQ();
    memset(B, 0, sizeof B);
    for(int i = N; i--; )
    if(Id[Sa[i]] >= 0) AddL(Id[Sa[i]], i);
    for(int i = 0; i < n; i++)
    Modify(H[i]->p + 1, 1);
    for(int i = 0; i < q; i++)
    calc(qL[r[i] = i], qR[i], L[i], R[i] - L[i]);
    sort(r, r + q, Cmp);
    int c = 0;
    for(int i = 0; i < N; i++) {
    while(qL[r[c]] == i) {
    ans[r[c]] = Sum(qR[r[c]] + 1) - Sum(qL[r[c]]);
    if(++c >= q) break;
    }
    if(c >= q) break;
    Modify(i + 1, -1);
    if(H[Id[Sa[i]]]) {
    H[Id[Sa[i]]] = H[Id[Sa[i]]]->n;
    if(H[Id[Sa[i]]])
    Modify(H[Id[Sa[i]]]->p + 1, 1);
    }
    }
    for(int i = 0; i < q; i++)
    printf("%d ", ans[i]);
    }
     
    inline int getstr() {
    char c = getchar();
    for(; !islower(c); c = getchar());
    int len = 0;
    for(; islower(c); c = getchar())
    str[len++] = c;
    return len;
    }
     
    void Init() {
    scanf("%d%d", &n, &q);
    N = 0;
    int len;
    for(int i = 0; i < n; i++) {
    len = getstr();
    for(int j = 0; j < len; j++) {
    Id[N] = i;
    S[N++] = str[j];
    }
    Id[N] = -1;
    S[N++] = '$';
    }
    for(int i = 0; i < q; i++) {
    len = getstr();
    L[i] = N;
    for(int j = 0; j < len; j++) {
    Id[N] = -1;
    S[N++] = str[j];
    }
    R[i] = N;
    Id[N] = -1;
    S[N++] = '$';
    }
    S[N - 1] = 0;
    }
     
    int main() {
    Init();
    Work();
    return 0;
    }

    ----------------------------------------------------------------------

    2780: [Spoj]8093 Sevenk Love Oimaster

    Time Limit: 1 Sec  Memory Limit: 128 MB
    Submit: 581  Solved: 188
    [Submit][Status][Discuss]

    Description

         Oimaster and sevenk love each other.

        But recently,sevenk heard that a girl named ChuYuXun was dating with oimaster.As a woman's nature, sevenk felt angry and began to check oimaster's online talk with ChuYuXun.    Oimaster talked with ChuYuXun n times, and each online talk actually is a string.Sevenk asks q questions like this,    "how many strings in oimaster's online talk contain this string as their substrings?"

    Input


    There are two integers in the first line, 
    the number of strings n and the number of questions q.
    And n lines follow, each of them is a string describing oimaster's online talk. 
    And q lines follow, each of them is a question.
    n<=10000, q<=60000 
    the total length of n strings<=100000, 
    the total length of q question strings<=360000

    Output

    For each question, output the answer in one line.

    Sample Input

    3 3
    abcabcabc
    aaa
    aafe
    abc
    a
    ca

    Sample Output

    1
    3
    1

    HINT

    Source

  • 相关阅读:
    内存泄露检测工具之DMalloc
    五年后你在何方
    程序员技术练级攻略
    Windows编程革命简史
    su的时候密码认证失败的解决方法
    ruby 元编程 meta programming
    内存对齐分配策略(含位域模式)
    Ruby 之 Block, Proc, Lambda 联系区别,转载
    c++异常处理机制示例及讲解
    ruby 常见问题集 1 不断更新中
  • 原文地址:https://www.cnblogs.com/JSZX11556/p/5188453.html
Copyright © 2011-2022 走看看