zoukankan      html  css  js  c++  java
  • 787. Cheapest Flights Within K Stops

    https://leetcode.com/problems/cheapest-flights-within-k-stops/description/

    DFS (slow)

    class Solution {
    public:
        vector<vector<pair<int,int>>> v;     // city: <connected city, price>
        vector<bool> visited;
        int res = INT_MAX;
        
        int findCheapestPrice(int n, vector<vector<int>>& flights, int src, int dst, int K) {
            v = vector<vector<pair<int,int>>>(n);
            visited = vector<bool>(n, false);
            
            for (const auto& flight : flights)
                v[flight[0]].push_back( { flight[1], flight[2] });
            
            visited[src] = true;
            dfs(n, src, dst, K+1, 0);
            return res == INT_MAX ? -1 : res;
        }
        
        void dfs(int n, int cur, int dst, int K, int cost) {
            if (cur == dst) {
                res = min(res, cost);
                return;
            }
            if (cost >= res)    return;     // if cost >= res, no point to search further
            if (K == 0) return;
            
            for (const auto& pCityPrice : v[cur]) {
                if (!visited[pCityPrice.first]) {
                    visited[cur] = true;
                    dfs(n, pCityPrice.first, dst, K-1, cost + pCityPrice.second);
                    visited[cur] = false;
                }
            }
        }
    };

    BFS (seems not able to use BFS as below, we may have to record each path. Looks like paths in BFS is not independent, we can't use BFS. In this case, if A->B->C and A->C, we are not able to determine cost[C] unless we keep track the path to C. Then we may use DFS directly.)

    class Solution {
    public:
        int findCheapestPrice(int n, vector<vector<int>>& flights, int src, int dst, int K) {
            vector<vector<pair<int,int>>> v = vector<vector<pair<int,int>>>(n);
            vector<int> cost = vector<int>(n, -1);
            
            for (const auto& flight : flights)
                v[flight[0]].push_back( { flight[1], flight[2] });
            
            queue<int> q;
            q.push(src);
            cost[src] = 0;
            
            int stop = 0;
            while (!q.empty()) {
                if (stop++ > K)
                    break;
                
                int qsz = q.size();
                while (qsz-- > 0) {
                    int cur = q.front(); q.pop();
                    for (const auto& pCityPrice : v[cur]) {
                        int curDest = pCityPrice.first;
                        if (cost[curDest] == -1 || cost[curDest] > cost[cur] + pCityPrice.second) {
                            q.push(curDest);
                            cost[curDest] = cost[cur] + pCityPrice.second;
                        }
                    }
                }
            }
            return cost[dst];
        }
    };

    Expand stops from src.

    class Solution {
    public:
        int findCheapestPrice(int n, vector<vector<int>>& flights, int src, int dst, int K) {
            vector<vector<pair<int,int>>> v = vector<vector<pair<int,int>>>(n);
            
            for (const auto& flight : flights)
                v[flight[0]].push_back( { flight[1], flight[2] });
            
            vector<vector<int>> dp(n, vector<int>(K+1, INT_MAX));
            
            for (const auto& pCityPrice : v[src]) {
                int curDest = pCityPrice.first;
                int curPrice = pCityPrice.second;
                dp[curDest][0] = min(dp[curDest][0], curPrice);
            }
            for (int k = 1; k <= K; k++) {
                for (int i = 0; i < n; i++) {
                    if (dp[i][k-1] == INT_MAX)   continue;
                    for (const auto& pCityPrice : v[i]) {
                        int curDest = pCityPrice.first;
                        int curPrice = pCityPrice.second;
                        dp[curDest][k] = min(dp[curDest][k], dp[i][k-1] + curPrice);
                    }
                }
            }
            int res = INT_MAX;
            for (int k = 0; k <= K; k++)
                res = min(res, dp[dst][k]);
            return res == INT_MAX ? -1 : res;
        }
    };

    Think backward, expand stops from dst.

    class Solution {
    public:
        int findCheapestPrice(int n, vector<vector<int>>& flights, int src, int dst, int K) {
            vector<int> bestfrom(n, INT_MAX);     // Current best from n to dst
            
            for (const auto& flight : flights) {        // non-stop from each city to dst
                if (flight[1] == dst)
                    bestfrom[flight[0]] = min(bestfrom[flight[0]], flight[2]);
            }
            // from each city to dst with one more stop.
            // say we know bestfrom[A] is reachable, now if we find price[B->A] + bestfrom[A] < bestfrom[B],
            // we find a better route from B to dst.
            for (int k = 1; k <= K; k++) {              
                for (const auto& flight : flights) {
                    if (bestfrom[flight[1]] != INT_MAX)
                        bestfrom[flight[0]] = min(bestfrom[flight[0]], bestfrom[flight[1]] + flight[2]);
                }
            }
            return bestfrom[src] == INT_MAX ? -1 : bestfrom[src];
        }
    };
  • 相关阅读:
    【总结】搜索
    【luogu】p2296 寻找道路
    【luogu】p2058 海港
    【总结】二叉搜索树
    【总结】线段树
    【总结】矩阵快速幂
    【笔记】很基础的数论知识
    【总结】扩展欧几里得算法
    【总结】二分查找
    【高精度乘法】例1.4 课本185页
  • 原文地址:https://www.cnblogs.com/JTechRoad/p/8978075.html
Copyright © 2011-2022 走看看