zoukankan      html  css  js  c++  java
  • POJ 2411 Mondriaan's Dream

                                                                                     Mondriaan's Dream
    Time Limit: 3000MS   Memory Limit: 65536K
    Total Submissions: 18359   Accepted: 10487

    Description

    Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, after producing the drawings in his 'toilet series' (where he had to use his toilet paper to draw on, for all of his paper was filled with squares and rectangles), he dreamt of filling a large rectangle with small rectangles of width 2 and height 1 in varying ways. 

    Expert as he was in this material, he saw at a glance that he'll need a computer to calculate the number of ways to fill the large rectangle whose dimensions were integer values, as well. Help him, so that his dream won't turn into a nightmare!

    Input

    The input contains several test cases. Each test case is made up of two integer numbers: the height h and the width w of the large rectangle. Input is terminated by h=w=0. Otherwise, 1<=h,w<=11.

    Output

    For each test case, output the number of different ways the given rectangle can be filled with small rectangles of size 2 times 1. Assume the given large rectangle is oriented, i.e. count symmetrical tilings multiple times.

    Sample Input

    1 2
    1 3
    1 4
    2 2
    2 3
    2 4
    2 11
    4 11
    0 0

    Sample Output

    1
    0
    1
    2
    3
    5
    144
    51205


        插头dp模板题之:1*2的多米诺骨牌放满网格纸的方案数。
        这个玩意有超级多变种,比如说:
    1.不放满
    2.不允许有贯穿网格的直线
    3.矩阵版(行和列其中一个<=6另一个血大)
    4.(骨牌形状的多样性)

        当然这些本质都是一样的:插头dp。
        这种题的共同特点就是不能像普通状压dp一样把整行整列当做状态的一部分,这样不如把
    适合题目的轮廓线当成状态的一部分来的简单。

    (留个坑,基于连通性的状压dp还完全不会(据说转移方案一般都是两位数写起来贼带劲hhhh))

    #include<iostream>
    #include<cstring>
    #include<algorithm>
    #include<cstdlib>
    #include<cstdio>
    #include<cmath>
    #define ll long long
    using namespace std;
    ll f[2][3000],n,m,ans;
    int ci[30],now,nxt,to;
    
    int main(){
        ci[0]=1;
        for(int i=1;i<=20;i++) ci[i]=ci[i-1]<<1;
        
        while(scanf("%lld%lld",&n,&m)==2&&n&&m){
            if(n>m) swap(n,m);
            now=ans=0,memset(f,0,sizeof(f));
            
            /*
            if(n==1){
                if(m&1) puts("0");
                else printf("%d
    ",m>>1);
                continue;
            }
            */
            
            f[0][ci[n]-1]=1;
            for(int i=0;i<m;i++)
                for(int j=0;j<n;j++){
                    nxt=now^1;
                    memset(f[nxt],0,sizeof(f[nxt]));
                    
                    for(int S=0;S<ci[n];S++){
                        if(!(S&ci[n-1])){
                            //竖着放 
                            to=(S<<1)|1;
                            f[nxt][to]+=f[now][S];
                        }else{
                            if(j&&!(S&1)){
                                //横着放 
                                to=((S<<1)|3)^ci[n];
                                f[nxt][to]+=f[now][S];
                            }
                            //不放 
                            f[nxt][(S<<1)^ci[n]]+=f[now][S];
                        }
                    }
                    
                    now=nxt;
                }
            
            ans=f[now][ci[n]-1];
            printf("%lld
    ",ans); 
        }
        
        return 0;
    }
    我爱学习,学习使我快乐
  • 相关阅读:
    Jmeter监控服务器性能
    三种主流的WebService实现方案(REST/SOAP/XML-RPC)简述及比较
    从0到1搭建移动App功能自动化测试平台(0):背景介绍和平台规划
    Jmeter监控系统等资源,ServerAgent端口的修改
    Performance plugin离线安装
    Oracle定义常量和变量
    通过FTP将一个数据文件从A服务器下载到B服务器的整个过程
    Oracle使用%rowtype变量存储一行数据
    Oracle使用%type类型的变量输出结果
    mdf与ldf文件如何还原到SQLserver数据库
  • 原文地址:https://www.cnblogs.com/JYYHH/p/8228371.html
Copyright © 2011-2022 走看看