zoukankan      html  css  js  c++  java
  • HDOJ 4961 Boring Sum

    Discription
    Number theory is interesting, while this problem is boring. 

    Here is the problem. Given an integer sequence a 1, a 2, …, a n, let S(i) = {j|1<=j<i, and a j is a multiple of a i}. If S(i) is not empty, let f(i) be the maximum integer in S(i); otherwise, f(i) = i. Now we define bi as a f(i). Similarly, let T(i) = {j|i<j<=n, and a j is a multiple of a i}. If T(i) is not empty, let g(i) be the minimum integer in T(i); otherwise, g(i) = i. Now we define c i as a g(i). The boring sum of this sequence is defined as b 1 * c 1 + b 2 * c 2 + … + b n * c n.

    Given an integer sequence, your task is to calculate its boring sum.

    Input

    The input contains multiple test cases. 

    Each case consists of two lines. The first line contains an integer n (1<=n<=100000). The second line contains n integers a 1, a 2, …, a n (1<= ai<=100000). 

    The input is terminated by n = 0.

    Output

    Output the answer in a line.

    Sample Input

    5
    1 4 2 3 9
    0

    Sample Output

    136
    
    
            
     

    Hint

    In the sample, b1=1, c1=4, b2=4, c2=4, b3=4, c3=2, b4=3, c4=9, b5=9, c5=9, so b1 * c1 + b2 * c2 + … + b5 * c5 = 136.



    预处理一下每个数的约数,直接暴力做就行了。
    #include<iostream>
    #include<cstdio>
    #include<cstdlib>
    #include<cmath>
    #include<algorithm>
    #include<vector>
    #include<cstring>
    #define ll long long
    #define maxn 100005
    #define pb push_back
    using namespace std;
    ll tot=0;
    vector<int> son[maxn];
    int n,m,a[maxn],f[maxn];
    int mult[maxn],g[maxn],to;
    
    inline void init(){
        for(int i=1;i<=100000;i++)
            for(int j=i;j<=100000;j+=i) son[j].pb(i);
    }
    
    int main(){
        init();
        
        while(scanf("%d",&n)==1&&n){
            memset(mult,0,sizeof(mult));
            for(int i=1;i<=n;i++){
                scanf("%d",a+i);
                f[i]=mult[a[i]];
                if(!f[i]) f[i]=i;
                for(int j=son[a[i]].size()-1;j>=0;j--){
                    to=son[a[i]][j];
                    mult[to]=max(mult[to],i);
                }
            }
    
            memset(mult,0x3f,sizeof(mult));
            for(int i=n;i;i--){
                g[i]=mult[a[i]];
                if(g[i]==mult[0]) g[i]=i;
                for(int j=son[a[i]].size()-1;j>=0;j--){
                    to=son[a[i]][j];
                    mult[to]=min(mult[to],i);
                }            
            }
            
            tot=0;
            for(int i=1;i<=n;i++) tot+=(ll)a[f[i]]*(ll)a[g[i]];
            printf("%lld
    ",tot);
        }
        
        return 0;
    }
    
    
  • 相关阅读:
    linux进程间通信--信号量
    linux进程间通信--信号通信
    linux进程间通信--管道通信
    探究守护进程及其错误日志处理
    探究wait与waitpid之间的那些事
    探究一下strtok的用法
    文件IO与标准IO探究及总结
    Linux 库的制作--动态库与静态库
    python基础使用
    linux正则表达式使用
  • 原文地址:https://www.cnblogs.com/JYYHH/p/8325138.html
Copyright © 2011-2022 走看看