zoukankan      html  css  js  c++  java
  • HDOJ 4961 Boring Sum

    Discription
    Number theory is interesting, while this problem is boring. 

    Here is the problem. Given an integer sequence a 1, a 2, …, a n, let S(i) = {j|1<=j<i, and a j is a multiple of a i}. If S(i) is not empty, let f(i) be the maximum integer in S(i); otherwise, f(i) = i. Now we define bi as a f(i). Similarly, let T(i) = {j|i<j<=n, and a j is a multiple of a i}. If T(i) is not empty, let g(i) be the minimum integer in T(i); otherwise, g(i) = i. Now we define c i as a g(i). The boring sum of this sequence is defined as b 1 * c 1 + b 2 * c 2 + … + b n * c n.

    Given an integer sequence, your task is to calculate its boring sum.

    Input

    The input contains multiple test cases. 

    Each case consists of two lines. The first line contains an integer n (1<=n<=100000). The second line contains n integers a 1, a 2, …, a n (1<= ai<=100000). 

    The input is terminated by n = 0.

    Output

    Output the answer in a line.

    Sample Input

    5
    1 4 2 3 9
    0

    Sample Output

    136
    
    
            
     

    Hint

    In the sample, b1=1, c1=4, b2=4, c2=4, b3=4, c3=2, b4=3, c4=9, b5=9, c5=9, so b1 * c1 + b2 * c2 + … + b5 * c5 = 136.



    预处理一下每个数的约数,直接暴力做就行了。
    #include<iostream>
    #include<cstdio>
    #include<cstdlib>
    #include<cmath>
    #include<algorithm>
    #include<vector>
    #include<cstring>
    #define ll long long
    #define maxn 100005
    #define pb push_back
    using namespace std;
    ll tot=0;
    vector<int> son[maxn];
    int n,m,a[maxn],f[maxn];
    int mult[maxn],g[maxn],to;
    
    inline void init(){
        for(int i=1;i<=100000;i++)
            for(int j=i;j<=100000;j+=i) son[j].pb(i);
    }
    
    int main(){
        init();
        
        while(scanf("%d",&n)==1&&n){
            memset(mult,0,sizeof(mult));
            for(int i=1;i<=n;i++){
                scanf("%d",a+i);
                f[i]=mult[a[i]];
                if(!f[i]) f[i]=i;
                for(int j=son[a[i]].size()-1;j>=0;j--){
                    to=son[a[i]][j];
                    mult[to]=max(mult[to],i);
                }
            }
    
            memset(mult,0x3f,sizeof(mult));
            for(int i=n;i;i--){
                g[i]=mult[a[i]];
                if(g[i]==mult[0]) g[i]=i;
                for(int j=son[a[i]].size()-1;j>=0;j--){
                    to=son[a[i]][j];
                    mult[to]=min(mult[to],i);
                }            
            }
            
            tot=0;
            for(int i=1;i<=n;i++) tot+=(ll)a[f[i]]*(ll)a[g[i]];
            printf("%lld
    ",tot);
        }
        
        return 0;
    }
    
    
  • 相关阅读:
    链堆栈的实现
    关于HyperLink的NavigateUrl属性的链接地址参数设置
    //yield return用于无缝实现迭代模式。
    NUnit的使用
    非常不错的数据访问架构
    Dictionary应用
    针对数据分析没态度的几句牢骚
    微软算法面试题(4)
    程序员面试题精选100题(60)判断二叉树是不是平衡的
    C++设计模式单件
  • 原文地址:https://www.cnblogs.com/JYYHH/p/8325138.html
Copyright © 2011-2022 走看看