zoukankan      html  css  js  c++  java
  • HDOJ 2582 f(n)

    Discription
    This time I need you to calculate the f(n) . (3<=n<=1000000) 

    f(n)= Gcd(3)+Gcd(4)+…+Gcd(i)+…+Gcd(n). 
    Gcd(n)=gcd(C[n][1],C[n][2],……,C[n][n-1]) 
    C[n][k] means the number of way to choose k things from n some things. 
    gcd(a,b) means the greatest common divisor of a and b.

    Input

    There are several test case. For each test case:One integer n(3<=n<=1000000). The end of the in put file is EOF.

    Output

    For each test case: 
    The output consists of one line with one integer f(n).

    Sample Input

    3
    26983

    Sample Output

    3
    37556486


    本来毫无思路,然而打了个表找了找规律,发现Gcd(x)无非两种情况:
    1.当x=p^q时,其中p为质数,那么Gcd(x)=p
    2.其他的时候Gcd(x)=1

    然后就是个水题了
    #include<bits/stdc++.h>
    #define ll long long
    #define maxn 1000000
    using namespace std;
    int zs[maxn/5],t=0,n;
    ll f[maxn+5];
    bool v[maxn+5];
    
    inline void init(){
        for(int i=2;i<=maxn;i++){
            if(!v[i]) f[i]=i,zs[++t]=i;
            for(int j=1,u;j<=t&&(u=zs[j]*i)<=maxn;j++){
                v[u]=1;
                if(!(i%zs[j])){
                    f[u]=f[i];
                    break;
                }
                f[u]=1;
            }
        }
        
        for(int i=4;i<=maxn;i++) f[i]+=f[i-1];
    }
    
    int main(){
        init();
        while(scanf("%d",&n)==1) printf("%lld
    ",f[n]);
        return 0;
    }
  • 相关阅读:
    14.3.1选择选项
    14.3 选择框表单
    14.2.4HTML5约束API验证
    input标签之外是否一定添加form标签
    14.2.3自动切换焦点
    php设计模式---抽象模式模式
    php设计模式---简单工厂模式
    git基本教程,每天更新
    第5章 卷积神经网络
    第3章 深度学习基础
  • 原文地址:https://www.cnblogs.com/JYYHH/p/8327433.html
Copyright © 2011-2022 走看看