zoukankan      html  css  js  c++  java
  • Codeforces 716 E Digit Tree

    E. Digit Tree
    time limit per test
    3 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    ZS the Coder has a large tree. It can be represented as an undirected connected graph of n vertices numbered from 0 to n - 1 and n - 1edges between them. There is a single nonzero digit written on each edge.

    One day, ZS the Coder was bored and decided to investigate some properties of the tree. He chose a positive integer M, which is coprime to 10, i.e. .

    ZS consider an ordered pair of distinct vertices (u, vinteresting when if he would follow the shortest path from vertex u to vertex v and write down all the digits he encounters on his path in the same order, he will get a decimal representaion of an integer divisible by M.

    Formally, ZS consider an ordered pair of distinct vertices (u, v) interesting if the following states true:

    • Let a1 = u, a2, ..., ak = v be the sequence of vertices on the shortest path from u to v in the order of encountering them;
    • Let di (1 ≤ i < k) be the digit written on the edge between vertices ai and ai + 1;
    • The integer  is divisible by M.

    Help ZS the Coder find the number of interesting pairs!

    Input

    The first line of the input contains two integers, n and M (2 ≤ n ≤ 100 000, 1 ≤ M ≤ 109, ) — the number of vertices and the number ZS has chosen respectively.

    The next n - 1 lines contain three integers each. i-th of them contains ui, vi and wi, denoting an edge between vertices ui and vi with digit wi written on it (0 ≤ ui, vi < n,  1 ≤ wi ≤ 9).

    Output

    Print a single integer — the number of interesting (by ZS the Coder's consideration) pairs.

    Examples
    input
    6 7
    0 1 2
    4 2 4
    2 0 1
    3 0 9
    2 5 7
    output
    7
    input
    5 11
    1 2 3
    2 0 3
    3 0 3
    4 3 3
    output
    8


    虽然不是很难想但是差点调死我hhhhh
    首先这道题和常规点分治不太一样的地方是,普通的点分治一般是无向路径,我们往往不用考虑起点和终点而是直接考虑路径的两个端点就行了。
    但是本题是有向路径,不同的方向意味着不同的数字。

    而且本题还要一个坑爹的地方是知道终点好找起点,但是知道起点不好找终点。。。。。
    当然有两种解决方法:
    1.对于当前的重心选任意两条路径统计一遍,再把在同一颗子树内的减掉。
    2.考虑到起点要么比终点先被扫到,要么晚被扫到,那么我们就正反两遍常规的calc,这样还不用去重。

    我就是用的第二种方法。。。

    然后千万别忘了起点或终点是重心的情况,,,,但这样不太可能,因为这样例都过不了hhhh

    对于点分的每层我们用map记录一下起点的情况,然后用扫到的终点更新答案。
    至于怎么更新答案,就是一个式子,推一下就好了也不难hhhh

    当然如果你把向下和向上的路径写反了(就像一开始的我)是要调很久的hhhh,因为样例里并没有长度>=3的路径。

    #include<iostream>
    #include<cstdio>
    #include<cstdlib>
    #include<cstring>
    #include<cmath>
    #include<map>
    #include<algorithm>
    #define ll long long
    #define maxn 100005
    using namespace std;
    map<int,int> mmp;
    int ci[maxn],n,m,num=0,b[maxn];
    int to[maxn*2],ne[maxn*2];
    int hd[maxn],sz,minn,root;
    int d[maxn],tot,ni[maxn];
    int siz[maxn],val[maxn*2];
    ll ans;
    bool done[maxn];
    
    inline void add(int uu,int vv,int ww){
        to[++num]=vv,ne[num]=hd[uu],hd[uu]=num,val[num]=ww;
    }
    
    void froot(int x,int fa){
        siz[x]=1;
        int bal=0;
        for(int i=hd[x];i;i=ne[i]) if(!done[to[i]]&&to[i]!=fa){
            froot(to[i],x);
            siz[x]+=siz[to[i]];
            bal=max(bal,siz[to[i]]);
        }
        
        bal=max(bal,sz-siz[x]);
        if(bal<minn) minn=bal,root=x;
    }
    
    int fsiz(int x,int fa){
        int an=1;
        for(int i=hd[x];i;i=ne[i]) if(!done[to[i]]&&to[i]!=fa){
            an+=fsiz(to[i],x);
        }    
        return an;
    }
    
    void dfs(int x,int fa,int dep,int dx,int dy,int tmp){
        int tox=(ll)(m-dy)*(ll)ni[dep]%m;
        if(mmp.count(tox)) ans+=(ll)mmp[tox];
        if(tmp){
            if(!dx) ans++;
            if(!dy) ans++;
        }
        
        d[++tot]=dx;
        
        for(int i=hd[x];i;i=ne[i]) if(!done[to[i]]&&to[i]!=fa){
            dfs(to[i],x,dep+1,((ll)dx+(ll)val[i]*(ll)ci[dep])%m,((ll)dy*10ll+(ll)val[i])%m,tmp);
        }
    }
    
    inline void calc(int pos,int va,int tmp){
        int pre=tot+1;
        dfs(pos,pos,1,va,va,tmp);
        for(;pre<=tot;pre++){
            if(!mmp.count(d[pre])) mmp[d[pre]]=1;
            else mmp[d[pre]]++;
        }
    }
    
    inline void work(int x,int trsiz){
        sz=trsiz,minn=1<<29;
        froot(x,x);
        done[root]=1;
    
        int len=0;
        for(int i=hd[root];i;i=ne[i]) if(!done[to[i]]){
            b[++len]=i;
            calc(to[i],val[i],0);
        }
        
        mmp.clear(),tot=0;
        
        for(;len;len--){
            calc(to[b[len]],val[b[len]],1);
        }
        
        mmp.clear(),tot=0;
        for(int i=hd[root];i;i=ne[i]) if(!done[to[i]]){
            work(to[i],fsiz(to[i],to[i]));
        }
    }
    
    void gcd(int aa,int bb,ll &xx,ll &yy){
        if(!bb){
            xx=1,yy=0;
            return;
        }
        
        gcd(bb,aa%bb,yy,xx);
        yy-=xx*(ll)(aa/bb);
    }
    
    inline int get_ni(int x){
        ll xx,yy;
        gcd(x,m,xx,yy);
        return (xx+m)%m;
    }
    
    int main(){
        scanf("%d%d",&n,&m);
        ci[0]=ni[0]=1;
        for(int i=1;i<=n;i++) ci[i]=(ll)ci[i-1]*10ll%m,ni[i]=get_ni(ci[i]);
        //printf("%d %d %d
    ",i,ci[i],ni[i]);
        
        int uu,vv,ww;
        for(int i=1;i<n;i++){
            scanf("%d%d%d",&uu,&vv,&ww),uu++,vv++;
            ww%=m;
            add(uu,vv,ww),add(vv,uu,ww);
        }
        
        work(1,n);
        
        cout<<ans<<endl;
        return 0;
    }
     
  • 相关阅读:
    顶级Kagglers的心得和技巧
    大数加法
    TensorFlow 2.0高效开发指南
    Java 8 特性 —— Stream
    Java 8 特性 —— 函数式接口
    Java 8 特性 —— 方法引用
    Java 8 特性 —— 默认方法和静态方法
    Java 8 特性 —— lambda 表达式
    Effective Java 读书笔记
    jQuery动态添加、删除按钮及input输入框
  • 原文地址:https://www.cnblogs.com/JYYHH/p/8386565.html
Copyright © 2011-2022 走看看