zoukankan      html  css  js  c++  java
  • Codeforces 323C Two permutations

    题目描述

    You are given two permutations pp and qq , consisting of nn elements, and mm queries of the form: l_{1},r_{1},l_{2},r_{2}l1,r1,l2,r2 $ (l_{1}<=r_{1}; l_{2}<=r_{2}) $ . The response for the query is the number of such integers from 11 to nn , that their position in the first permutation is in segment [l_{1},r_{1}][l1,r1] (borders included), and position in the second permutation is in segment [l_{2},r_{2}][l2,r2](borders included too).

    A permutation of nn elements is the sequence of nn distinct integers, each not less than 11 and not greater than nn .

    Position of number v(1<=v<=n)(1<=v<=n) in permutation g_{1},g_{2},...,g_{n}g1,g2,...,gn is such number ii , that g_{i}=vgi=v .

    输入输出格式

    输入格式:

    The first line contains one integer n (1<=n<=10^{6})n (1<=n<=106) , the number of elements in both permutations. The following line contains nn integers, separated with spaces: p_{1},p_{2},...,p_{n} (1<=p_{i}<=n)p1,p2,...,pn (1<=pi<=n) . These are elements of the first permutation. The next line contains the second permutation q_{1},q_{2},...,q_{n}q1,q2,...,qn in same format.

    The following line contains an integer m (1<=m<=2·10^{5})m (1<=m<=2105) , that is the number of queries.

    The following mm lines contain descriptions of queries one in a line. The description of the ii -th query consists of four integers: a,b,c,d (1<=a,b,c,d<=n)a,b,c,d (1<=a,b,c,d<=n) . Query parameters l_{1},r_{1},l_{2},r_{2}l1,r1,l2,r2 are obtained from the numbers a,b,c,da,b,c,dusing the following algorithm:

    1. Introduce variable xx . If it is the first query, then the variable equals 00 , else it equals the response for the previous query plus one.
    2. Introduce function f(z)=((z-1+x) mod n)+1f(z)=((z1+x) mod n)+1 .
    3. Suppose l_{1}=min(f(a),f(b)),r_{1}=max(f(a),f(b)),l_{2}=min(f(c),f(d)),r_{2}=max(f(c),f(d))l1=min(f(a),f(b)),r1=max(f(a),f(b)),l2=min(f(c),f(d)),r2=max(f(c),f(d)) .

    输出格式:

    Print a response for each query in a separate line.

    输入输出样例

    输入样例#1: 
    3
    3 1 2
    3 2 1
    1
    1 2 3 3
    
    输出样例#1: 
    1
    
    输入样例#2: 
    4
    4 3 2 1
    2 3 4 1
    3
    1 2 3 4
    1 3 2 1
    1 4 2 3
    
    输出样例#2: 
    1
    1
    2

    把第二个排列的数在第一个排列中对应的位置记一下,主席树跑一跑就行了。
    #include<iostream>
    #include<cstdio>
    #include<cstdlib>
    #include<cmath>
    #include<algorithm>
    #include<cstring>
    #define ll long long
    #define maxn 1000005
    using namespace std;
    struct node{
        node *lc,*rc;
        int s;
    }nil[maxn*30],*rot[maxn],*cnt;
    int a[maxn],n,ky,num[maxn];
    int m,le,ri,k,preans=-1,ple,pri;
    char ch;
    
    inline int add(int x,int y,const int ha){
      return (x+y)%ha;
    }
    
    node *update(node *u,int l,int r){
        node *ret=++cnt;
        *ret=*u;
        ret->s++;
        
        if(l==r) return ret;
        
        int mid=l+r>>1;
        if(le<=mid) ret->lc=update(ret->lc,l,mid);
        else ret->rc=update(ret->rc,mid+1,r);
        
        return ret;
    }
    
    int query(node *u,node *v,int l,int r){
        if(l>=le&&r<=ri) return v->s-u->s;
        
        int mid=l+r>>1,an=0;
        if(le<=mid) an+=query(u->lc,v->lc,l,mid);
        if(ri>mid) an+=query(u->rc,v->rc,mid+1,r);
        return an;
    }
    
    inline void prework(){
        cnt=rot[0]=nil->lc=nil->rc=nil;
        nil->s=0;
        
        for(int i=1;i<=n;i++){
            le=a[i];
            rot[i]=update(rot[i-1],1,n);
        }
    }
    
    inline void solve(){
        scanf("%d",&m);
        while(m--){
            scanf("%d%d%d%d",&le,&ri,&ple,&pri);
            
            le=add(le,preans,n)+1;
            ri=add(ri,preans,n)+1;
            ple=add(ple,preans,n)+1;
            pri=add(pri,preans,n)+1;
            if(le>ri) swap(le,ri);
            if(ple>pri) swap(ple,pri);
                    
            preans=query(rot[ple-1],rot[pri],1,n);
            printf("%d
    ",preans);
        }
    }
    
    int main(){
        scanf("%d",&n);
        int now;
        for(int i=1;i<=n;i++){
            scanf("%d",&now);
            num[now]=i;
        }
        for(int i=1;i<=n;i++){
            scanf("%d",&now);
            a[i]=num[now];
        }
        
        prework();
        solve();
        
        return 0;
    }
    

      

    
    
  • 相关阅读:
    WebApi 接口参数不再困惑:传参详解
    dataType和contentType的区别
    WaitHandles 的数目必须少于或等于 64 个--任意线程信号量监视
    跨线程调用DataGridView控件
    (转)调整.NET控件WebBrowser的默认浏览器内核版本
    Winform中checklistbox控件的常用方法
    csuoj 残缺的棋盘
    csuoj 你经历过绝望吗?两次! bfs + 优先队列
    csuoj barricade
    csuoj 集训队分组
  • 原文地址:https://www.cnblogs.com/JYYHH/p/8469264.html
Copyright © 2011-2022 走看看