zoukankan      html  css  js  c++  java
  • Codeforces 451 E Devu and Flowers

    Discription

    Devu wants to decorate his garden with flowers. He has purchased n boxes, where the i-th box contains fi flowers. All flowers in a single box are of the same color (hence they are indistinguishable). Also, no two boxes have flowers of the same color.

    Now Devu wants to select exactly s flowers from the boxes to decorate his garden. Devu would like to know, in how many different ways can he select the flowers from each box? Since this number may be very large, he asks you to find the number modulo (109 + 7).

    Devu considers two ways different if there is at least one box from which different number of flowers are selected in these two ways.

    Input

    The first line of input contains two space-separated integers n and s (1 ≤ n ≤ 20, 0 ≤ s ≤ 1014).

    The second line contains n space-separated integers f1, f2, ... fn (0 ≤ fi ≤ 1012).

    Output

    Output a single integer — the number of ways in which Devu can select the flowers modulo (109 + 7).

    Example
    Input
    2 3
    1 3
    Output
    2
    Input
    2 4
    2 2
    Output
    1
    Input
    3 5
    1 3 2
    Output
    3
    Note

    Sample 1. There are two ways of selecting 3 flowers: {1, 2} and {0, 3}.

    Sample 2. There is only one way of selecting 4 flowers: {2, 2}.

    Sample 3. There are three ways of selecting 5 flowers: {1, 2, 2}, {0, 3, 2}, and {1, 3, 1}.

    容斥一波直接带走

    #include<bits/stdc++.h>
    #define ll long long
    using namespace std;
    const int maxn=1100005;
    const int ha=1000000007;
    int ci[33],tag[maxn],n,inv[33];
    ll sum[maxn],S,ans=0;
    
    inline int add(int x,int y){
    	x+=y;
    	return x>=ha?x-ha:x;
    }
    
    inline void init(){
    	ci[0]=1;
    	for(int i=1;i<=20;i++) ci[i]=ci[i-1]<<1;
    	inv[1]=1;
    	for(int i=2;i<=20;i++) inv[i]=-inv[ha%i]*(ll)(ha/i)%ha+ha;
    }
    
    inline int C(int x,int y){
    	int an=1;
    	for(int i=1;i<=y;i++) an=an*(ll)(x-i+1)%ha*(ll)inv[i]%ha;
    	return an;
    }
    
    inline void solve(){
    	tag[0]=1,sum[0]=0;
    	for(int i=0;i<ci[n];i++){
    		if(i) tag[i]=-tag[i^(i&-i)];
    		sum[i]=sum[i^(i&-i)]+sum[i&-i];
    		if(sum[i]<=S) ans=add(ans,add(tag[i]*C((S-sum[i]+n-1)%ha,n-1),ha));
    	}
    }
    
    int main(){
    	init();
    	scanf("%d%I64d",&n,&S);
    	for(int i=0;i<n;i++) scanf("%I64d",sum+ci[i]),sum[ci[i]]++;
    	solve();
    	printf("%I64d
    ",ans);
    	return 0;
    }
    
  • 相关阅读:
    cf1270D——交互,思维
    cf1270E —— 奇偶构造!+ 坐标系分类讨论旋转
    cf1207E——交互,思维
    cf1271D——经典 dp+贪心+图论
    cf1271E——数学找规律,二分套二分
    cf1272E——bfs反边图
    cf1272F——经典升维dp,好题!
    cf1276B——割点+深搜树
    cf1276C——单调性分析,思维
    cf1277D——思维贪心+字符串
  • 原文地址:https://www.cnblogs.com/JYYHH/p/8607126.html
Copyright © 2011-2022 走看看