zoukankan      html  css  js  c++  java
  • LightOj 1336 Sigma Function

    Discription

    Sigma function is an interesting function in Number Theory. It is denoted by the Greek letter Sigma (σ). This function actually denotes the sum of all divisors of a number. For example σ(24) = 1+2+3+4+6+8+12+24=60. Sigma of small numbers is easy to find but for large numbers it is very difficult to find in a straight forward way. But mathematicians have discovered a formula to find sigma. If the prime power decomposition of an integer is

     

    Then we can write,

     

    For some n the value of σ(n) is odd and for others it is even. Given a value n, you will have to find how many integers from 1 to n have even value of σ.

    Input

    Input starts with an integer T (≤ 100), denoting the number of test cases.

    Each case starts with a line containing an integer n (1 ≤ n ≤ 1012).

    Output

    For each case, print the case number and the result.

    Sample Input

    4

    3

    10

    100

    1000

    Sample Output

    Case 1: 1

    Case 2: 5

    Case 3: 83

    Case 4: 947

        首先发现2这个质因子没有用,所以我们就枚举每个数的2的次数是多少,然后/2^这个次数之后钦定它是奇数。

    我们发现满足条件的数必须质因子里有至少一个的次数是奇数,所以直接补集转化减一下就行了。

    #include<bits/stdc++.h>
    #define ll long long
    using namespace std;
    int T;
    ll ans,N;
    inline ll g(ll x){ return (x+1)>>1;}
    inline ll f(ll x){ return g(x)-g((ll)floor(sqrt(x+0.5)));}
    int main(){
    	scanf("%d",&T);
    	for(int i=1;i<=T;i++){
    		ans=0,scanf("%lld",&N);
    		while(N) ans+=f(N),N>>=1;
    		printf("Case %d: %lld
    ",i,ans);
    	}
    	return 0;
    }
    

      

  • 相关阅读:
    第十次作业
    第八次作业
    作业七--1
    作业五
    作业六
    作业四
    作业一
    作业三
    作业2
    jsp第一次作业
  • 原文地址:https://www.cnblogs.com/JYYHH/p/8824006.html
Copyright © 2011-2022 走看看