zoukankan      html  css  js  c++  java
  • CodeChef

    Read problems statements in Mandarin Chinese and Russian.

    A meteor fell on Andrew's house. That's why he decided to build a new home and chose a site where he wanted to build it. Let the whole area be a rectangular field of size NxM. Naturally, Andrew wanted to build a house on the entire area of the site. However, the Hazardous Construction Prevention Bureau did not let Andrew's plans come true. The Bureau said that some of the cells of the field are dangerous for the foundation. There are exactly K such cells.

    Andrew's not a poor man. And as anyone who has money, he saves money. Therefore, he is willing to buy not the whole area, but only a stripe of the same width. The house will occupy a rectangular area in this stripe with sides parallel to the sides of the original site.

    Andrew is asking for your help: for each LiHi - the lowest and the highest boundaries (inclusive), respectively - find the maximum area of ​​the house that Andrew can build on the relevant site.

    Input

    In the first line you are given three integers NM and K.
    In the following K lines you are given different pairs of integers xiyi - the coordinates of the dangerous cells.
    Next line contains an integer Q - the number of Andrew's queries
    The last Q lines describe the queries: each line contains two integers L and H - the lowest and the highest boundaries.

    Output

    In the output file, print Q lines, where i-th line contains the answer for i-th query. If you cannot build the house, then output 0.

    Constraints

    • 1 ≤ N, M ≤ 1000
    • 1 ≤ K ≤ N * M
    • 1 ≤ xi ≤ N
    • 1 ≤ yi ≤ M
    • 1 ≤ Q ≤ 106
    • 1 ≤ Li ≤ Hi ≤ N

    Example

    Input:
    4 5 5
    2 1
    3 2
    1 3
    2 4
    1 4
    4
    1 1
    3 4
    2 3
    1 4
    
    Output:
    2
    6
    3
    6


    发现询问数过于多了,因为最多的行区间不过10^6,所以我们可以先预处理出所有区间的答案然后O(1)回答询问。
    设f[i][j] 为第i~j行的最大矩阵面积,也就是题目所求。然后再设g[i][j]为 上边界是i,下边界是j的矩阵最宽可以是多少。
    于是转移很好写 => f[i][j] = max{f[i+1][j] , f[i][j-1] , g[i][j] * (j-i+1)}.所以现在关键是怎么求 g[i][j]。
    考虑单调栈求一个二维最大全1矩形的做法,我们可以扩展一下: 加入当前扫到的下边界在i,然后对于从左到右的每一个点j,它向上的高度是h[j],并且
    向左右最多能延伸的位置是 L[j],R[j],这个时候我们就可以用 R[j]-L[j]+1去更新 g[i-h[j]+1 ~ i][i]。
    当然不能暴力更新,打个标记之后就是O(N^2)的了,,再加上算f也是O(N^2)的,就可以愉快的A了本题了23333

    #include<bits/stdc++.h>
    #define ll long long
    using namespace std;
    const int maxn=1005;
    int F[maxn][maxn],G[maxn][maxn];
    int n,m,Q,PX,PY,num,s[maxn],tp;
    int L[maxn],R[maxn],h[maxn];
    bool v[maxn][maxn];
    
    inline int read(){
    	int x=0; char ch=getchar();
    	for(;!isdigit(ch);ch=getchar());
    	for(;isdigit(ch);ch=getchar()) x=x*10+ch-'0';
    	return x;
    }
    
    inline void init(){
    	for(int i=1;i<=n;i++){
    		for(int j=1;j<=m;j++)
    		    if(v[i][j]) h[j]=0;
    		    else h[j]++;
    		
    		s[tp=0]=0;
    		for(int j=1;j<=m;j++){
    			while(tp&&h[s[tp]]>=h[j]) tp--;
    			L[j]=s[tp],s[++tp]=j;
    		}
    		s[tp=0]=m+1;
    		for(int j=m;j;j--){
    			while(tp&&h[s[tp]]>=h[j]) tp--;
    			R[j]=s[tp],s[++tp]=j;
    		}
    		
    		for(int j=1;j<=m;j++) G[i][i-h[j]+1]=max(G[i][i-h[j]+1],R[j]-L[j]-1);
    		
    		for(int j=1;j<=i;j++) G[i][j]=max(G[i][j],G[i][j-1]);
    	}
    	
    	for(int i=1;i<=n;i++) F[i][i]=G[i][i];
    	
    	for(int len=1;len<n;len++)
    	    for(int i=1,j=i+len;j<=n;j++,i++) F[j][i]=max(max(F[j-1][i],F[j][i+1]),G[j][i]*(j-i+1));
    }
    
    inline void solve(){
    	Q=read();
    	while(Q--){
    		PX=read(),PY=read();
    		printf("%d
    ",F[PY][PX]);
    	}
    }
    
    int main(){
    	scanf("%d%d%d",&n,&m,&num);
    	for(int i=1;i<=num;i++){
    		PX=read(),PY=read();
    		v[PX][PY]=1;
    	}
    	
    	init();
    	solve();
    	
    	return 0;
    }
    

      

     
  • 相关阅读:
    4_5.springboot2.x之Web开发RestfulCRUD操作
    4_4.springboot之Web开发登录和拦截器
    4_3.springboot2.x之默认访问首页和国际化
    4_2.springboot2.x配置之springmvc自动配置
    4_1.springboot2.xWeb开发使用thymeleaf
    03_springboot2.x日志处理
    08_springboot2.x自定义starter
    JavaScript-----对象属性赋值及获取属性值的方式
    Spring探究-----AOP配置详解
    Spring探究-----自动装配Bean详解
  • 原文地址:https://www.cnblogs.com/JYYHH/p/8849148.html
Copyright © 2011-2022 走看看