

发现一个区间[L,R]代表的2进制数是3的倍数,当且仅当从L开始的后缀二进制值 - 从R+1开始的后缀二进制值 是 3 的倍数 (具体证明因为太简单而被屏蔽)。
于是我们就可以在每个点维护从它开始的后缀二进制数的值,因为在%3同余系下只有3个数,所以我们可以很容易的用线段树进行区间维护,然后答案就是 C(num[0],2) + C(num[1],2) + C(num[2],2) [注意如果查询区间是 [l,r]的话那么 在线段树中查找的区间是 [l,r+1] ,因为区间[x,y]对应 x和y+1后缀相减]。
但是有修改咋办呢?
给每个位置设一个权值,后缀长度是奇数的权值是1,反之则是2。
然后稍微动脑子想一下,如果 一个位置修改前是 1 和 这个位置权值是 1 这两个条件只满足其中一个,那么就是对前缀区间 +1;否则就是对前缀区间+2。
所以随便写个线段树打打标记就好啦。
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=500005;
int a[maxn],val[maxn],tag[maxn*4];
int n,m,sum[maxn*4][3],hz[maxn];
int le,ri,W,opt,ans[3];
inline int read(){
int x=0; char ch=getchar();
for(;!isdigit(ch);ch=getchar());
for(;isdigit(ch);ch=getchar()) x=x*10+ch-'0';
return x;
}
inline int add(int x,int y){ x+=y; return x>=3?x-3:x;}
inline void maintain(int o,int lc,int rc){
sum[o][0]=sum[lc][0]+sum[rc][0];
sum[o][1]=sum[lc][1]+sum[rc][1];
sum[o][2]=sum[lc][2]+sum[rc][2];
}
inline void CG(int o,int VAL){
int T=sum[o][0];
tag[o]=add(tag[o],VAL);
if(VAL==1){
sum[o][0]=sum[o][2];
sum[o][2]=sum[o][1];
sum[o][1]=T;
}
else{
sum[o][0]=sum[o][1];
sum[o][1]=sum[o][2];
sum[o][2]=T;
}
}
inline void pushdown(int o,int lc,int rc){
if(tag[o]){
CG(lc,tag[o]),CG(rc,tag[o]);
tag[o]=0;
}
}
void build(int o,int l,int r){
if(l==r){
sum[o][hz[l]]++;
return;
}
int mid=l+r>>1,lc=o<<1,rc=(o<<1)|1;
build(lc,l,mid),build(rc,mid+1,r);
maintain(o,lc,rc);
}
void update(int o,int l,int r){
if(l>=le&&r<=ri){
CG(o,W);
return;
}
int mid=l+r>>1,lc=o<<1,rc=(o<<1)|1;
pushdown(o,lc,rc);
if(le<=mid) update(lc,l,mid);
if(ri>mid) update(rc,mid+1,r);
maintain(o,lc,rc);
}
void query(int o,int l,int r){
if(l>=le&&r<=ri){
ans[0]+=sum[o][0];
ans[1]+=sum[o][1];
ans[2]+=sum[o][2];
return;
}
int mid=l+r>>1,lc=o<<1,rc=(o<<1)|1;
pushdown(o,lc,rc);
if(le<=mid) query(lc,l,mid);
if(ri>mid) query(rc,mid+1,r);
}
inline ll getC(int x){ return x?x*(ll)(x-1)>>1:0;}
inline void solve(){
while(m--){
opt=read();
if(opt==1){
le=1,ri=read();
if(a[ri]+val[ri]==2) W=2; else W=1;
a[ri]^=1,update(1,1,n);
}
else{
le=read(),ri=read(),ri++;
ans[0]=ans[1]=ans[2]=0;
query(1,1,n);
printf("%lld
",getC(ans[0])+getC(ans[1])+getC(ans[2]));
}
}
}
int main(){
n=read(),m=read();
for(int i=1;i<=n;i++) a[i]=read();
n++,val[n]=2,hz[n]=0;
for(int i=n-1;i;i--){
val[i]=3-val[i+1];
hz[i]=add(hz[i+1],val[i]*a[i]);
}
build(1,1,n);
solve();
return 0;
}